Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammoxidation selective olefin, solid state

The active site on the surface of selective propylene anmioxidation catalyst contains three critical functionalities associated with the specific metal components of the catalyst (37—39) an CC-H abstraction component such as Bi3+, Sb3+, or Te4+ an olefin chemisorption and oxygen or nitrogen insertion component such as Mo6+ or Sb5+ and a redox couple such as Fe2+/Fe3+ or Ce3+/ Ce4+ to enhance transfer of lattice oxygen between the bulk and surface of the catalyst. The surface and solid-state mechanisms of propylene ammoxidation catalysis have been determined using Raman spectroscopy (40,41), neutron diffraction (42—44), x-ray absorption spectroscopy (45,46), x-ray diffraction (47—49), pulse kinetic studies (36), and probe molecule investigations (50). [Pg.183]

Our recent work on the bismuth-cerium molybdate catalyst system has shown that it can serve as a tractable model for the study of the solid state mechanism of selective olefin oxidation by multicomponent molybdate catalysts. Although compositionally and structurally quite simple compared to other multiphase molybdate catalyst systems, bismuth-cerium molybdate catalysts are extremely effective for the selective ammoxidation of propylene to acrylonitrile (16). In particular, we have found that the addition of cerium to bismuth molybdate significantly enhances its catalytic activity for the selective ammoxidation of propylene to acrylonitrile. Maximum catalytic activity was observed for specific compositions in the single phase and two phase regions of the phase diagram (17). These characteristics of this catalyst system afford the opportunity to understand the physical basis for synergies in multiphase catalysts. In addition to this previously published work, we also include some of our most recent results on the bismuth-cerium molybdate system. As such, the present account represents a summary of our interpretations of the data on this system. [Pg.58]


See other pages where Ammoxidation selective olefin, solid state is mentioned: [Pg.71]   


SEARCH



Ammoxidation

Olefin ammoxidation, selective, solid

Olefin selectivity

Olefination selective

Olefins selective

State selection

State selective

© 2024 chempedia.info