Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia covalent bonding

Both these molecules exist in the gaseous state and both are trigonal planar as indicated by reference to Table 2.8. However, in each, a further covalent bond can be formed, in which both electrons of the shared pair are provided by one atom, not one from each as in normal covalent bonding. For example, monomeric aluminium chloride and ammonia form a stable compound ... [Pg.41]

Covalent bonding, in all the cases so far quoted, produces molecules not ions, and enables us to explain the inability of the compounds formed to conduct electricity. Covalently bonded groups of atoms can, however, also be ions. When ammonia and hydrogen chloride are brought together in the gaseous state proton transfer occurs as follows ... [Pg.42]

The energy required to break the bond between two covalently bonded atoms is called the bond dissociation energy . In polyatomic molecules this quantity varies with environment. For example, ammonia has three N—H bond dissociation energies ... [Pg.47]

When carbon forms four covalent bonds with halogen atoms the second quantum level on the carbon is completely filled with electrons. Most of the reactions of the Group IV tetrahalides require initial donation by a Lewis base (p. 91) (e.g. water, ammonia) which attaches initially to the tetrahalide by donation of its electron pair. Hence, although the calculated free energy of a reaction may indicate that the reaction is energetically favourable, the reaction may still not proceed. Thus we find that the tetrahalides of carbon... [Pg.195]

Towards a simple Lewis base, for example the proton, phosphine is a poorer electron donor than ammonia, the larger phosphorus atom being less able to form a stable covalent bond with the acceptor atom or molecule. Phosphine is, therefore, a much weaker base than ammonia and there is no series of phosphonium salts corresponding to the ammonium salts but phosphonium halides. PH4X (X = Cl, Br, I) can be prepared by the direct combination of phosphine with the appropriate hydrogen halide. These compounds are much more easily dissociated than ammonium halides, the most stable being the iodide, but even this dissociates at 333 K PH4I = PH3 -t- HI... [Pg.226]

The H—O—H angle m water (105°) and the H—N—H angles m ammonia (107°) are slightly smaller than the tetrahedral angle These bond angle contractions are easily accommodated by VSEPR by reasoning that electron pairs m bonds take up less space than an unshared pair The electron pair m a covalent bond feels the attractive force of... [Pg.29]

The valence-bond concept of orbital hybridization described in the previous four sections is not limited to carbon compounds. Covalent bonds formed by-other elements can also be described using hybrid orbitals. Look, for instance, at the nitrogen atom in methylamine, CH3NH2, an organic derivative of ammonia (NH3) and the substance responsible for the odor of rotting fish. [Pg.19]

The ionization energy of the hydrogen atom, 313.6 kcal/mole, is quite close to that of fluorine, so a covalent bond between these two atoms in HF is expected. Actually the properties of HF show that the molecule has a significant electric dipole, indicating ionic character in the bond. The same is true in the O—H bonds of water and, to a lesser extent, in the N—H bonds of ammonia. The ionic character of bonds to hydro-... [Pg.289]

The boron atom in BF5 can complete its octet if an additional atom or ion with a lone pair of electrons forms a bond by providing both electrons. A bond in which both electrons come from one of the atoms is called a coordinate covalent bond. For example, the tetrafluoroborate anion, BF4 (31), forms when boron trifluoride is passed over a meral fluoride. In this anion, the formation of a coordinate covalent bond with a fluoride ion gives the B atom an octet. Another example of a coordinate covalent bond is that formed when boron trifluoride reacts with ammonia ... [Pg.201]

The Lewis structure of the product, a white molecular solid, is shown in (32). In this reaction, the lone pair on the nitrogen atom of ammonia, H3N , can be regarded as completing boron s octet in BF3 by forming a coordinate covalent bond. [Pg.201]

The characteristics of a covalent bond between two atoms are due mainly to the properties of the atoms themselves and vary only a little with the identities of the other atoms present in a molecule. Consequently, we can predict some characteristics of a bond with reasonable certainty once we know the identities of the two bonded atoms. For instance, the length of the bond and its strength are approximately the same regardless of the molecule in which it is found. Thus, to understand the properties of a large molecule, such as how DNA replicates in our cells and transmits genetic information, we can study the character of C=0 and N- H bonds in much simpler compounds, such as formaldehyde, H2C=0, and ammonia, NH,. [Pg.204]

To remove an ion, we can use the fact that many metal cations are Lewis acids (Section 10.2). When a Lewis acid and a Lewis base react, they form a coordinate covalent bond and the product is called a coordination complex. In this section, we consider complexes in which the Lewis acid is a metal cation, such as Ag+. An example is the formation of Ag(NI 1,)2+ when an aqueous solution of the Lewis base ammonia is added to a solution of silver ions ... [Pg.593]

In both cases the nitrogen atom uses its pair of nonbonding electrons to make a new covalent bond. This similarity led G. N. Lewis to classify ammonia as a base in its reaction with B (CH3)3 as well as in its reaction with H3 O . Whereas the Br< )nsted definition focuses on proton transfer, the Lewis definition of acids and bases focuses on electron pairs. [Pg.1499]

Ammonia is a prime example of a Lewis base. In addition to its three N—H bonds, this molecule has a lone pair of electrons on its nitrogen atom, as Figure 21-1 shows. Although all of the valence orbitals of the nitrogen atom in NH3 are occupied, the nonbonding pair can form a fourth covalent bond with a bonding partner that has a vacant valence orbital available. [Pg.1500]

The simplest type of Lewis acid-base reaction is the combination of a Lewis acid and a Lewis base to form a compound called an adduct. The reaction of ammonia and trimethyl boron is an example. A new bond forms between boron and nitrogen, with both electrons supplied by the lone pair of ammonia (see Figure 21-21. Forming an adduct with ammonia allows boron to use all of its valence orbitals to form covalent bonds. As this occurs, the geometry about the boron atom changes from trigonal planar to tetrahedral, and the hybrid description of the boron valence orbitals changes from s p lo s p ... [Pg.1500]

Ammonia reacts with boron trichloride to form a molecule called an adduct or Lewis acid base complex in which the lone pair on the ammonia molecule is shared with the boron atom to form a covalent bond and completing an octet on boron (Figure 1.16) ... [Pg.19]

When some molecules containing only covalent bonds are dissolved in water, they react with the water to produce ions in solution. For example, pure hydrogen chloride, HCI, and pure ammonia. NH3, consist of molecules containing only covalent bonds. When cooled to sufficiently low temperatures (-33°C for NH -85°C for HCI) these substances condense to liquids. However, the liquids do not conduct electricity, since they are still covalent and contain no ions. In contrast, when HCI is dissolved in water, the resulting solution conducts electricity well. Aqueous solutions of ammonia also conduct, but poorly. In these cases, the following reactions occur to the indicated extent to yield ions ... [Pg.97]

The total number of electrons that the cadmium ion, Cd2+, shares with the four ammonia ligands in the tetraamminecadmium(II) ion is 8, two electrons for every coordinate covalent bond. [Pg.421]

The analogy between the trivalent boron compounds and car-bonium ions extends to the geometry. Although our arguments for a preferred planar structure in carbonium ions are indirect, there is electron diffraction evidence for the planar structure of boron trimethyl and the boron trihalides.298 Like carbonium ions, the boron and aluminum analogs readily form a fourth covalent bond to atoms having the requisite non-bonding electrons. Examples are the compounds with ammonia, ether, and fluoride ion.297... [Pg.157]

So there are 3 (N — H) polar covalent bonds in the ammonia (NH3) molecule and 3 (B —Cl) polar covalent bonds in the boron trichloride (BC13) molecule. [Pg.20]

Therefore it cannot donate electrons to form a bond. But nitrogen (N) in the ammonia molecule has 1 unshared electron pair and it can therefore form a coordinate covalent bond with boron. [Pg.20]

FIGURE 5.16 The electron dot structure of a nitrogen atom (left) and an ammonia molecule (right). The pair of electrons above the nitrogen is the nonbonding pair available for coordinate covalent bonding. [Pg.118]

HC1 is the acid, because it is donating an H+ and the H+ will accept an electron pair from ammonia. Ammonia is the base, accepting the H+ and furnishing an electron pair that the H+ will bond with via coordinate covalent bonding. Coordinate covalent bonds are covalent bonds in which one of the atoms furnishes both of the electrons for the bond. After the bond is formed, it is identical to a covalent bond formed by donation of one electron by both of the bonding atoms. [Pg.76]

Pauling scale phys chem A numerical scale of electronegativities based on bond-energy calculations for different elements joined by covalent bonds. pol-iri Skal Pavy s solution analychem Laboratory reagent used to determine the concentration of sugars in solution by color titration contains copper sulfate, sodium potassium tartrate, sodium hydroxide, and ammonia in water solution. pa-vez S3,lu-sh3n Pb See lead. [Pg.280]

The idea here is just the same, except for inevitable refinements and details, for the formation of aU covalent bonds. So the basic ideas for chemical bonding in methane, ammonia, water, and so on, are the same. [Pg.44]

Many covalently bonded gases (including carbon monoxide, ammonia, and hydrogen cyanide)... [Pg.171]


See other pages where Ammonia covalent bonding is mentioned: [Pg.275]    [Pg.53]    [Pg.217]    [Pg.9]    [Pg.366]    [Pg.181]    [Pg.233]    [Pg.29]    [Pg.416]    [Pg.249]    [Pg.234]    [Pg.436]    [Pg.118]    [Pg.53]    [Pg.217]    [Pg.1053]    [Pg.19]    [Pg.199]    [Pg.347]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Ammonia bonding

Ammonia bonds

Ammonia covalent bonds

Ammonia covalent bonds

Coordinate covalent bonds ammonia molecule

© 2024 chempedia.info