Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino replacements

The nitrochlorobenzenes are valuable dyestufTs intermediates. The presence of the nitro-groups makes the chlorine atom very reactive and easily replaceable. Treatment with ammonia or dilute alkalis substitutes an amino- or hydroxy-group for the chlorine atom and gives a series of nilroanilines and nilrophenols. [Pg.277]

The diazonium group may be replaced by hydrogen, thus effecting the removal of the primary amino group, deamination, by the following methods ... [Pg.596]

Scheme 55) (235. 236). -The product obtained (77) is probably formed via the protonated form of the thiazole, whose reactivity is treated in Section IV, 1. The light-yellow leucobase (77) is reported to be oxidized by PbOj to the red-black carbinol (78) (236). This condensation reaction is also successful when benzaidehyde is replaced by formaldehyde, bis(2-amino-4-phenylthiazolyl-5)methane (79 i beine obtained (Scheme 56) (237). [Pg.45]

The amino group on sulfur in 133 may be replaced by substituted amines with evolution of ammonia to give compounds such as 134 (Scheme 68) (316). [Pg.411]

This method has mainly been used to prepare thiazoles nonsubstituted in the 2-position and involves the replacement of a functional substituent (amino, halo, mercapto, hydroxy, or carboxy) by a hydrogen. In this way the often delicate cyclization of thioformamide can be avoided. [Pg.339]

The replacement of 2-amino group by a hydrogen can be achieved by diazotization, followed by reduction with hypophosphorous acid (1-8, 13). Another method starting from 2-aminothiazole is to prepare the 2-halo-thiazole by the Sandmeyer reaction (prepared also from the 2-hydroxy-thiazole), which is then dehalogenated chemically or catalytically (1, 9, 10). [Pg.339]

Heating butanediol or tetrahydrofuran with ammonia or an amine in the presence of an acidic heterogeneous catalyst gives pyrroHdines (135,136). With a dehydrogenation catalyst, one or both of the hydroxyl groups are replaced by amino groups (137). [Pg.108]

In a modification of the original method. Read (60) replaced a-amino acids with a-amino nitriles. This reaction is sometimes known as Strecker hydantoin synthesis, the term referring to the reaction employed for the synthesis of the a-amino nitrile from an aldehyde or ketone. The cycli2ation intermediate (18) has been isolated in some cases (61), and is involved in a pH-controUed equiUbrium with the corresponding ureide. [Pg.253]

Fig. 1. Amino acid sequence for the A- and B-chains of human iasulin [11061-68-0] where soHd lines denote disulfide bonds. Porciae iasulin [12584-58-6] differs by one amino acid ia the B-chaia where alanine replaces threonine at positioa 30. Boviae iasulia [11070-73-8] differs by three amino acids. la the A-chain alanine replaces the threonine at positioa 8 and valine replaces the isoleuciae at position 10. In the B-chain there is an alanine at position 30. Fig. 1. Amino acid sequence for the A- and B-chains of human iasulin [11061-68-0] where soHd lines denote disulfide bonds. Porciae iasulin [12584-58-6] differs by one amino acid ia the B-chaia where alanine replaces threonine at positioa 30. Boviae iasulia [11070-73-8] differs by three amino acids. la the A-chain alanine replaces the threonine at positioa 8 and valine replaces the isoleuciae at position 10. In the B-chain there is an alanine at position 30.
There are numerous further appHcations for which maleic anhydride serves as a raw material. These appHcations prove the versatiHty of this molecule. The popular artificial sweetener aspartame [22839-47-0] is a dipeptide with one amino acid (l-aspartic acid [56-84-8]) which is produced from maleic anhydride as the starting material. Processes have been reported for production of poly(aspartic acid) [26063-13-8] (184—186) with appHcations for this biodegradable polymer aimed at detergent builders, water treatment, and poly(acryHc acid) [9003-01-4] replacement (184,187,188) (see Detergency). [Pg.460]

MDA reacts with acid anhydrides to form amides. In the reaction with maleic anhydride both of the amino hydrogens are replaced to form the imide, A[,Ar-(methylenedi-/)-phenylene) dimaleimide [1367-54-5]... [Pg.248]

Proteias are metabolized coatiauously by all living organisms, and are ia dyaamic equilibrium ia living cells (6,12). The role of amino acids ia proteia biosyathesis has beea described (2). Most of the amino acids absorbed through the digestioa of proteias are used to replace body proteias. The remaining portioa is metabolized iato various bioactive substances such as hormones and purine and pyrimidine nucleotides, (the precursors of DNA and RNA) or is consumed as an energy source (6,13). [Pg.271]

The replacement of the hydrogen of the methylo1 compound with an alkyl group renders the compound much more soluble in organic solvents and more stable. This reaction is also cataly2ed by acids and usually carried out in the presence of considerable excess alcohol to suppress the competing self-condensation reaction. After neutrali2ation of the acid catalyst, the excess alcohol may be stripped or left as a solvent for the amino resin. [Pg.324]

Anthraquinone can be sulfonated, nitrated, or halogenated. Sulfonation is of the greatest technical importance because the sulfonic acid group can be readily replaced by an amino or chloro group. Sulfonation with 20—25% oleum at a temperature of 130—135°C produces predominandy anthraquinone-2-sulfonic acid [84-48-0]. By the use of a stronger oleum, disulfonic acids are produced. The second sulfonic acid substituent never enters the same ring a mixture of 2,6- and 2,7-disulfonic acids is formed (Wayne-Armstrong rule). In order to sulfonate in the 1-, 1,5-, or 1,8-positions, mercury or one of its salts must be used as a catalyst. [Pg.421]

The 5-position of quinolones can be substituted by small groups such as halogens, hydroxyl, or amino (54—56). The amino group at this position can be advantageous, particularly when appHed to 6,8-difluoro-7-piperazinyl or 6,8-difluoro-7-pyrrohdinyl quinolones. In contrast to 6,8-difluoro quinolones, when this replacement is appHed to ofloxacin, the resulting derivative has reduced antibacterial activity (57). Replacement of the 5-amino group with methylamine or dimethylamine causes activity to drop substantially. Sparfloxacin [110871-86-8] (21), a representative of 5-amino-6,8-difluoro quinolones, affords modest improvements in gram-positive activity as well as increased in vivo potency when compared with both ciprofloxacin and ofloxacin (54). [Pg.454]

Subsequent knowledge of the stmcture, function, and biosynthesis of the foHc acid coenzyme gradually allowed a picture to be formed regarding the step in this pathway that is inhibited by sulfonamides. The biosynthetic scheme for foHc acid is shown in Figure 1. Sulfonamides compete in the step where condensation of PABA with pteridine pyrophosphate takes place to form dihydropteroate (32). The amino acids, purines, and pyrimidines that are able to replace or spare PABA are those with a formation that requkes one-carbon transfer catalyzed by foHc acid coenzymes (5). [Pg.467]


See other pages where Amino replacements is mentioned: [Pg.4]    [Pg.4]    [Pg.4]    [Pg.4]    [Pg.48]    [Pg.541]    [Pg.542]    [Pg.519]    [Pg.154]    [Pg.54]    [Pg.54]    [Pg.190]    [Pg.441]    [Pg.108]    [Pg.253]    [Pg.253]    [Pg.44]    [Pg.241]    [Pg.315]    [Pg.544]    [Pg.496]    [Pg.67]    [Pg.250]    [Pg.447]    [Pg.448]    [Pg.448]    [Pg.178]    [Pg.259]    [Pg.453]    [Pg.216]    [Pg.217]    [Pg.322]    [Pg.324]    [Pg.326]    [Pg.328]    [Pg.329]    [Pg.466]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Amino acid replacement

Amino acids glycine replacement

Amino acids valine replaced

Amino group migration Replacement)

Amino groups s. a. Amines Replacement

Exocyclic amino groups, metal replacement

From Rings with an Amino Group Adjacent to a Replaceable Hydrogen Atom

Intramolecular reactions amino group replacement

Reaction CLXVI.—Replacement of the Amino Group by Halogen

Replacement (s. a. Displacement, Substitution amino groups

Replacement (s. a. Substitution amino groups

Replacement (s. a. Substitution amino groups, partial

Replacement of Amino by Hydroxy and Alkoxy Groups

Replacement of Halogeno Substituents by Amino Groups

Replacement of N-amino groups

Replacement of amino groups

Replacement of aromatic amino groups

Replacement of aromatic amino groups fluorine

Replacement of aromatic chlorine atoms, by amino groups using

Replacement of the amino group by sulfur groups

Replacement, amino group by a bromine

Replacement, amino group by a bromine atom

Replacement, amino group by a bromine reaction)

Replacement, benzenesulfonate groups chlorine atom, with an amino group

Replacement, benzenesulfonate groups chlorine, by an amino group

Replacement, benzenesulfonate groups with an amino group

© 2024 chempedia.info