Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines oxidative cyanation

Oxidation of (-amines in the presence of NaCN affords a-cyanoamines in 53-83% yield. Tertiary a-cyanoamines are known to afford iminum salts by loss of cyanide ion and this oxidative cyanation is used in a synthesis of the indolizidine... [Pg.79]

There is a primary alcohol-to-aldehyde step in the synthesis of (+)-batzelladine A, and it was suggested that the oxidation of the primary alcohol (1) with TRAP/ NMO/PMS/CH Cl proceeds through an iminium-Ru alkoxide complex (2), rearranging as in (3)-(4) to give the aldehyde (5) (Fig. 1.13) [101] (a similar mechanism was proposed for the Ru-catalysed oxidative cyanation of tertiary amines [403] cf. 5.1.3.4, Fig. 5.3). [Pg.35]

Recently, a new type of reaction - that is, aerobic oxidative cyanation of tertiary amines - was discovered. In this reaction, oxidation with molecular oxygen in place of peroxides, in addition to direct carbon-carbon bond formation by trapping of the iminium ion intermediates with a carbon nucleophile under oxidative conditions, is accomplished simultaneously. The ruthenium-catalyzed oxidation of tertiary amines with molecular oxygen (1 atom) in the presence of sodium cyanide gives the corresponding a-aminonitriles (Eq. 3.74) [132], which are useful for synthesis of a-amino acids and 1,2-diamines. [Pg.78]

Scheme 3 Ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide... Scheme 3 Ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide...
Murahashi et al. [1] reported Ru(III)-catalyzed aerobic oxidative cyanation of N,N-dimethylanilines with NaCN in 2003, and the next year Li and co-workers developed an efficient Cu(I)-catalyzed alkynylation of tertiary amines with TBHP... [Pg.37]

For best results the commercial triethylamine (Matheson, b.p. 89-90°) should be purified to remove primary and secondary amines and water, either by distillation from acetic anhydride and then from barium oxide, or by reaction with phenyliso-cyanate.5 2 3 4... [Pg.63]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

Photo-oxidation of l,l-dialkyl-2-arylhydrazines by single-electron transfer with trimethylsilyl cyanide (TMSCN) as cyanide ion source leads to regio- and stereoselective a-hydrazino nitriles. This stereoselective cyanation of hydrazines takes place on the more substituted carbon atom compared with the results obtained with tertiary amines (Scheme 5). [Pg.170]

An important application of oxidation of a C-H bond adjacent to a nitrogen atom is the selective oxidation of amides. This reaction proceeds in the presence of ferf-BuOOH as the oxidant and Ru(II) salts. Thus in the example of Eq. (36), the a-tert-butylperoxy amide of the isoquinoline was obtained, which is an important synthetic intermediate for natural products [138]. This product can be conveniently reacted with a nucleophile in the presence of a Lewis add. Direct trapping of the iminium ion complex by a nudeophile was achieved in the presence of trimethylsilyl cyanide, giving a-cyanated amines as shown in Eq. (37) [45]. This ruthenium/peracid oxidation reaction provides an alternative to the Strecker reaction for the synthesis of a-amino acid derivatives since they involve the same a-cyano amine intermediates. In this way N-methyl-N-(p-methoxyphenyl) glycine could be prepared from N,N-dimethyl-p-methoxyaniline in 82% yield. [Pg.315]

Another key intermediate for pteridine synthesis was also seen in 2-amino-3-ethoxycarbonyl-5-phenylpyrazine 1-oxide which reacts with various amines to form the corresponding amides followed by cyclization with triethyl orthoformate giving 3-alkyl-6-phenyl-4(3/7)pteridinone 8-oxides <87JHC1109>. The synthesis of 2,4-diamino-6-methylpteridine 5-oxide (371) was achieved from 5-methyl-pyrazine-2-carboxamide (366) via the 4-oxide (367), a Hofmann degradation (368), bro-mination (369), and cyanation (370) followed by cyclization with guanidine to give (371) (Scheme 60) <93JHC841>. [Pg.720]


See other pages where Amines oxidative cyanation is mentioned: [Pg.77]    [Pg.145]    [Pg.344]    [Pg.279]    [Pg.284]    [Pg.341]    [Pg.341]    [Pg.224]    [Pg.81]    [Pg.113]    [Pg.257]    [Pg.154]    [Pg.3]    [Pg.226]    [Pg.273]    [Pg.790]    [Pg.278]    [Pg.215]    [Pg.173]    [Pg.33]    [Pg.152]    [Pg.285]    [Pg.19]    [Pg.501]    [Pg.26]    [Pg.82]    [Pg.790]    [Pg.221]    [Pg.270]   


SEARCH



Amines cyanation

Cyanate

Cyanates

Cyanation

Cyanation oxidative

Cyanations

© 2024 chempedia.info