Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides lithium-amide-mediated metalation

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

As shown by the last reaction in Scheme 5.23, the metalation of benzamides is complicated by several potential side reactions (Scheme 5.24). Thus, benzamides can also undergo ortho-metalation [181, 217-222] or metalation at benzylic positions [223-225], Ortho-metalation seems to be promoted by additives such as TMEDA, and benzylic metalation can be performed selectively with lithium amide bases [217,224], which are often not sufficiently basic to mediate ortho- or a-amino metalation. If deprotonation of the CH-N group succeeds, the resulting product might also undergo cydization by intramolecular attack at the arene [214, 216] (see also Ref. [226] and Scheme 5.27) instead of reacting intermolecularly with an electrophile. That this cydization occurs, despite the loss of aromatidty, shows how reactive these intermediates are. [Pg.163]

Other methods, among which thermolysis or photolysis of tetrazene [59], photolysis of nitrosoamines in acidic solution [60], photolysis of nitrosoamides in neutral medium [61], anodic oxidation of lithium amides [62], tributylstannane-mediated homolysis of O-benzoyl hydroxamic derivatives [63, 64], and spontaneous homolysis of a transient hydroxamic acid sulfinate ester [65] could have specific advantages. The redox reaction of hydroxylamine with titanium trichloride in aqueous acidic solution results in the formation of the simplest protonated aminyl radical [66] similarly, oxaziridines react with various metals, notably iron and copper, to generate a nitrogen-centered radical/oxygen-centered anion pair [67, 68]. The development of thiocarbazone derivatives by Zard [5, 69] has provided complementary useful method able to sustain, under favorable conditions, a chain reaction where stannyl radicals act simply as initiators and allow transfer of a sulfur-containing... [Pg.918]

The preparation of enantiopure or enriched complexes possessing planar chirality has been accomplished either by resolution of racemic mixtures or by asymmetric syntheses. Reported methods for the resolution of planar chirality include both chemical and kinetic resolution procedures, whilst reported asymmetric syntheses of enantiomerically pure or enriched benchrotrenic complexes include enantioselective ort/io-deprotonations with chiral lithium amide bases, and the transfer of side chain chirality onto the arene ring mediated by diastereoselective orf/io-nucleophilic additions and o/tfeo-metalations. [Pg.186]

Combination of achiral enolates vith achiral aldehydes mediated by chiral ligands at the enolate counter-ion opens another route to non-racemic aldol adducts. Again, this concept has been extremely fruitful for boron, tin, titanium, zirconium and other metal enolates. It has, ho vever not been applied very frequently to alkaline and earth alkaline metals. The main, inherent, dra vback in the use of these metals is that the reaction of the corresponding enolate, vhich is not complexed by the chiral ligand, competes vith that of the complexed enolate. Because the former reaction path vay inevitably leads to formation of the racemic product, the chiral ligand must be applied in at least stoichiometric amounts. Thus, any catalytic variant is excluded per se. Among the few approaches based on lithium enolates, early vork revealed that the aldol addition of a variety of lithium enolates in the presence of (S,S)-l,4-(bisdimethylamino)-2,3-dimethoxy butane or (S,S)-1,2,3,4-tetramethoxybutane provides only moderate induced stereoselectivity, typical ee values being 20% [177]. Chelation of the ketone enolate 104 by the chiral lithium amide 103 is more efficient - the j5-hydroxyl ketone syn-105 is obtained in 68% ee and no anti adduct is formed (Eq. (47)) [178]. [Pg.52]


See other pages where Amides lithium-amide-mediated metalation is mentioned: [Pg.41]    [Pg.29]    [Pg.791]    [Pg.82]    [Pg.27]    [Pg.497]    [Pg.22]    [Pg.209]    [Pg.175]    [Pg.217]   


SEARCH



Lithium amide

Lithium metal

Lithium-mediated

Metal mediated

Metalation amides

Metallic lithium

Metals lithium metal

© 2024 chempedia.info