Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ambient isotopic

For the knot plane projection with defined passages, the following Reidemeister theorem is valid [39] different knots (or links) are topologically isomorphic to each other if they can be transformed continuously into one another by means of a sequence of simple local Reidemeister moves of types 1, 2 and 3 (see Fig. 9). Two knots are called regular isotopic if they are isomorphic with respect to the last two types of moves (2 and 3) if they are isomorphic with respect to all types of Reidemeister moves, they are called ambient isotopic. As can be seen from Fig. 9, a Reidemeister move of type 1 leads to the cusp creation on chain projection. At the same time, it is noteworthy that all real 3D-knots (links) are of ambient isotopy. [Pg.16]

Ambient Isotopic Studies of Mercury—Biological Fractionation of Mercury Isotopes... [Pg.4648]

CS that are not ambient isotopic. We cannot J. C. Zhong, M. Munakata, T. Kuroda-Sowa, transform one into the other without bond/ M. Maekawa, Y. Suenaga, Y. Kitamori, Inorg. edge crossing. The layer on the left is rather Chem. 2000, 39, 4273.) common while that on the right is observed... [Pg.67]

These effects of differential vapor pressures on isotope ratios are important for gases and liquids at near-ambient temperatures. As temperature rises, the differences for volatile materials become less and less. However, diffusion processes are also important, and these increase in importance as temperature rises, particularly in rocks and similar natural materials. Minerals can exchange oxygen with the atmosphere, or rocks can affect each other by diffusion of ions from one type into another and vice versa. Such changes can be used to interpret the temperatures to which rocks have been subjected during or after their formation. [Pg.365]

FIGURE 3.4 Results from the May 2000 dose-response experiment conducted in situ within mesocosms installed at 4 sites in the Florida Everglades and using isotopically labeled Hg. Experimental conditions called for dosing at 0.5, 1.0, and 2.0 times the ambient loading rate... [Pg.59]

Product analysis by NMR indicated an isotope effect at 118°C of = 2.14, corrected for numbers of H versus D. On lowering the temperature to -12°C, however, it was found that the isotope effect increased to 3.25. Referring to earlier experimental results on the C-H shift in methylchlorocarbene, " the authors cited the normal temperature dependence of the isotope effect as evidence against tunneling in 64. In retrospect, however, as noted above, theoretical support for an atypical inverse temperature dependence in methylchlorocarbene has been refuted. Hence, the involvement of tunneling in 62/64 at ambient temperatures is still an open question. [Pg.448]

The collected sample at -196°C was isolated from the flow of the GC s helium gas stream and then the loop was warmed to ambient temperature for GC-mass spectroscopic analyses. The gas cell, which contained the isotopic CO2 and the C2Hg standard in helium at one atmosphere, was placed in the injection helium flow of the GC-mass spectrometer for ten minutes, before the mini-switching valve was turned to inject the vapor contents into the instrument. After three minutes, the CO2 peak eluted. The superimposed peaks were sampled ten times during their elution and the relative isotopic quantities of - C02 C02 and C02 were determined. [Pg.328]

For the study of mixed oxides, one should characterize the various sites. In this case, the first step is to characterize the CO adsorption at various equilibrium pressures at low temperature, followed by evacuation at increasing temperatures to obtain information about the stabilities of the various species. Although the C—O stretching frequency is the most informative parameter, the data determining the stabilities of the various species can be decisive for the assignment of the bands. Multiple carbonyls adsorbed on the same metal cation are possible, and in order to identify them isotopic mixtures should be used. Sometimes the polycarbonyls are very stable and in this case, if 12CO is adsorbed first and then 13CO introduced, mixed species may not form at ambient temperature. [Pg.113]

The photolyses of diazirines 9a and 9b were similarly studied in Ar matrices at 10-34.5 K 59 Eq. 10. Benzylchlorocarbene (10a) and its ct,a-d2 analogue (10b) were observed by UV or IR (10b) spectroscopy, and their decay to styrenes 11 and 12 could be monitored. Tunneling in these 1,2-H(D) shifts was indicated by (a) much higher rates of carbene decay at 10 K than could be anticipated from extrapolation of the 298 K LFP kinetic data, (b) a kinetic isotope effect (KIE) for the 1,2-H(D) shifts estimated at 2000, and (c) little temperature dependence of the rate at low temperature.59 Accepting that QMT is important in the very low temperature H shifts of carbenes 10 and 18, the obvious question becomes is QMT important at higher or even ambient temperatures ... [Pg.72]

Isotopic and chemical patterns are given for an ambient sample (downtown Portland) and four sources of carbonaceous particles. The source C contributions (Ct) are expressed as percent of total aerosol mass, and the subscripts refer to Vegetation (slash burning), Road dust, Oil (residual and distillate), and Auto exhaust. Units for the ordinate are also percent of total aerosol mass, except for, 4C which is expressed as dpm/g-aerosol. Abscissa points for each pattern are ordered as l4C, C, Si, Ni, and Pb. [Pg.182]

We have described our most recent efforts to calculate vibrational line shapes for liquid water and its isotopic variants under ambient conditions, as well as to calculate ultrafast observables capable of shedding light on spectral diffusion dynamics, and we have endeavored to interpret line shapes and spectral diffusion in terms of hydrogen bonding in the liquid. Our approach uses conventional classical effective two-body simulation potentials, coupled with more sophisticated quantum chemistry-based techniques for obtaining transition frequencies, transition dipoles and polarizabilities, and intramolecular and intermolecular couplings. In addition, we have used the recently developed time-averaging approximation to calculate Raman and IR line shapes for H20 (which involves... [Pg.95]

Deep and shallow crustal fluids. Although comprehensive studies have yet to be undertaken, ordinary groundwater—ambient temperature water withdrawn from nearsurface wells—exhibits a wide range in Li isotopic compositions, from extremely light (5 Li... [Pg.183]

Figure 16. Schematic illustration of envelopes of gas species i, in this case Mg, surrounding a volatilizing molten chondrule in space. The size of the gas envelope is a function of ambient background pressure P by virtue of the effect that pressure has on the gas molecule diffusivity D,. The diffusion coefficient can be calculated from the kinetic theory of gases, as shown. The level of isotopic fractionation associated with volatilization of the molten chondrule depends upon the balance between the evaporative flux J vap and the condensation flux Tom When the fluxes are equal (i.e., when = 0), there is no mass-dependent isotope fractionation associated with volatilization. This will be the case when the local partial pressure P, approaches the saturation partial pressure P,... Figure 16. Schematic illustration of envelopes of gas species i, in this case Mg, surrounding a volatilizing molten chondrule in space. The size of the gas envelope is a function of ambient background pressure P by virtue of the effect that pressure has on the gas molecule diffusivity D,. The diffusion coefficient can be calculated from the kinetic theory of gases, as shown. The level of isotopic fractionation associated with volatilization of the molten chondrule depends upon the balance between the evaporative flux J vap and the condensation flux Tom When the fluxes are equal (i.e., when = 0), there is no mass-dependent isotope fractionation associated with volatilization. This will be the case when the local partial pressure P, approaches the saturation partial pressure P,...
Butler IP, Archer C, Rickard D, Vance D, Oldroyd A (2003) Fe isotope fractionation during Fe(II) monosulfide precipitation from aqueous Fe solutions at pH 8 and ambient temperature. Geochim Cosmochim Acta... [Pg.354]

Figure 5. Possible pathways by which Fe isotopes may be fractionated during dissimilatory Fe(III) reduction (DIR). Dissolution, if it occurs congruently, is unlikely to produce isotopic fractionation (Afi. If Fe(II) is well complexed in solution and conditions are anaerobic, precipitation of new ferric oxides (A3) is unlikely to occur. Significant isotopic fractionation is expected during the reduction step (A2), possibly reflecting isotopic fractionation between soluble pools of Fe(III) and Fe(II). The soluble Fe(III) component is expected to interact with the cell through an electron shuttle compound and/or an outer membrane protein, and is not part of the ambient pool of aqueous Fe. Sorption of aqueous or soluble Fe(II) to the ferric oxide/hydroxide substrate (A4) is another step in which isotopic fractionation may occur. Modified from Beard et al. (2003a). Figure 5. Possible pathways by which Fe isotopes may be fractionated during dissimilatory Fe(III) reduction (DIR). Dissolution, if it occurs congruently, is unlikely to produce isotopic fractionation (Afi. If Fe(II) is well complexed in solution and conditions are anaerobic, precipitation of new ferric oxides (A3) is unlikely to occur. Significant isotopic fractionation is expected during the reduction step (A2), possibly reflecting isotopic fractionation between soluble pools of Fe(III) and Fe(II). The soluble Fe(III) component is expected to interact with the cell through an electron shuttle compound and/or an outer membrane protein, and is not part of the ambient pool of aqueous Fe. Sorption of aqueous or soluble Fe(II) to the ferric oxide/hydroxide substrate (A4) is another step in which isotopic fractionation may occur. Modified from Beard et al. (2003a).
Fe(II) is the immediate reduced product, possibly bound to organic ligands ( Fe(II)-LFe(n) ), and eventually released to a larger pool of Fe(II), including Fe(II)aq. In terms of quantities that may be measured for their Fe isotope compositions, these would include the ferric substrate, Fe(II)aq, and likely Fe(II)-LFe(n) (although not a discrete phase) if this exists in the aqueous solution component. We assume that the Fe(III)-LFe(ni) component is not represented in a sample of the ambient aqueous solution, but instead is closely bound to or associated with the cells. [Pg.373]


See other pages where Ambient isotopic is mentioned: [Pg.4678]    [Pg.66]    [Pg.73]    [Pg.78]    [Pg.137]    [Pg.4678]    [Pg.66]    [Pg.73]    [Pg.78]    [Pg.137]    [Pg.196]    [Pg.1126]    [Pg.46]    [Pg.132]    [Pg.553]    [Pg.87]    [Pg.88]    [Pg.371]    [Pg.454]    [Pg.440]    [Pg.553]    [Pg.92]    [Pg.174]    [Pg.179]    [Pg.179]    [Pg.180]    [Pg.184]    [Pg.597]    [Pg.189]    [Pg.103]    [Pg.72]    [Pg.169]    [Pg.182]    [Pg.224]    [Pg.361]    [Pg.372]    [Pg.383]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Ambient

© 2024 chempedia.info