Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum hydrides, 155. protonation

Phenylstibine [58266-50-5] C H Sb, has been obtained by the reduction of phenyldiio do stihine [68972-61-2] CgH3l2Sb, (73) or phenyldichlorostibine [5035-52-9] 031130.2, (74) with lithium borohydride. It has also been prepared by the hydrolysis or methanolysis of phenylbis(trimethylsilyl)stibine [82363-95-9] C22H23Si2Sb (75). Diphenylstibine [5865-81-6] C22H22Sb, can be prepared by the interaction of diphenylchlorostibine [2629-47-2] C22H2QClSb, with either Hthium borohydride (76) or lithium aluminum hydride (77). It is also formed by hydrolysis or methanolysis of diphenyl (trimethylsilyl)stibine [69561-88-2] C H SbSi (75). Dimesitylstibine [121810-02-4] h.3.s been obtained by the protonation of lithium dimesityl stibide with trimethyl ammonium chloride (78). The x-ray crystal stmcture of this secondary stibine has also been reported. [Pg.206]

Cationic rings are readily reduced by complex hydrides under relatively mild conditions. Thus isoxazolium salts with sodium borohydride give the 2,5-dihydro derivatives (217) in ethanol, but yield the 2,3-dihydro compound (218) in MeCN/H20 (74CPB70). Pyrazolyl anions are reduced by borohydride to pyrazolines and pyrazolidines. Thiazolyl ions are reduced to 1,2-dihydrothiazoles by lithium aluminum hydride and to tetrahydrothiazoles by sodium borohydride. The tetrahydro compound is probably formed via (219), which results from proton addition to the dihydro derivative (220) containing an enamine function. 1,3-Dithiolylium salts easily add hydride ion from sodium borohydride (Scheme 20) (80AHC(27)151). [Pg.68]

The reduction of the double bond of an enamine is normally carried out either by catalytic hydrogenation (MS) or by reduction with formic acid (see Section V.H) or sodium borohydride 146,147), both of which involve initial protonation to form the iminium ion followed by hydride addition. Lithium aluminum hydride reduces iminium salts (see Chapter 5), but it does not react with free enamines except when unusual enamines are involved 148). [Pg.164]

The determination of position of protonation by reaction with diazomethane was performed as follows The enamine was treated at —70° with ethereal hydrogen chloride and the suspension of precipitated salt was treated with diazomethane and allowed to warm slowly to —40°, at which temperature nitrogen was liberated. The reaction with lithium aluminum hydride (LAH) was carried out similarly except that an ether solution of LAH was added in place of diazomethane. The results from reaction of diazomethane and LAH 16) are summarized in Table 1. [Pg.172]

Since double bonds may be considered as masked carbonyl, carboxyl or hydroxymethylene groups, depending on whether oxidative or reductive methods are applied after cleavage of the double bond, the addition products from (E)-2 and carbonyl compounds can be further transformed into a variety of chiral compounds. Thus, performing a second bromine/lithium exchange on compound 4, and subsequent protonation, afforded the olefin 5. Ozonolysis followed by reduction with lithium aluminum hydride gave (S)-l-phenyl-l,2-ethanediol in >98% ee. [Pg.143]

Ellipsoidal cryptands can also be synthesized by direct alkylation procedures <77AG(E)720,80CB1487), obviating the need for a diborane or lithium aluminum hydride reduction step. In the case of [l.l.l]cryptand (15a) yields of the final amine alkylation step are enhanced by the amine proton itself acting as a template (81CC777). [Pg.750]

Pyrimidine and simple alkyl derivatives are not reduced by NaBH4. Lithium aluminum hydride converts pyrimidines to di- or tetra-hydro derivatives. In general, electron-withdrawing substituents promote reduction of the ring, while electron-releasing substituents have the opposite effect. The metal hydride may act as a base and abstract a proton from the a-position in a substituent, in which case the anionic substrate may resist reduction in the ring. [Pg.218]

The reduction of isoquinolinium ions has been extensively investigated with borohydride and aluminum hydride ions. The use of boro-hydride ion in a protonic solvent normally leads to the formation of 1,2,3,4-tetrahydroisoquinolines, whereas the reduction with aluminum hydride ion in an aprotic medium generally gives a 1,2-dihydroiso-quinoline. This 1,2-dihydroisoquinoline contains an enamine system and may undergo further reaction on treatment with acid. The 1,2-and 3,4-dihydroisoquinolines as well as isoquinolinium ions are reduced by the borohydride ion in a protonic medium to the 1,2,3,4-tetrahydroisoquinolines. [Pg.68]

The isoquinoline ring undergoes attack by the nucleophilic aluminum hydride anion in much the same manner as the pyridine ring to produce 1,2-dihydroisoquinolines,91,92 although tetrahydroisoquino-lines have been reported as products even though no proton source was apparently present.92 (For a probable mechanism see Section IV,B.) The reduction of isoquinoline A-oxide by lithium aluminum hydride was also reported to yield the 1,2-dihydroisoquinoline.93... [Pg.73]

Another method that can be used to prepare primary amines is the reduction of nitriles with lithium aluminum hydride. The mechanism for this reaction involves sequential addition of two hydride nucleophiles to the electrophilic carbon of the cyano group. The addition of water in the workup step supplies the two protons on the nitrogen in the product. An example follows ... [Pg.829]

Explain why water, rather than H30+, is added to protonate the products of the reduction of amides and nitriles with lithium aluminum hydride. [Pg.830]

Tj -Cyclohexadienyl ruthenium complexes have been obtained either by addition of nucleophiles to the arene ring of arene ruthenium(II) complexes or by protonation of ruthenium(O) complexes. The first complex prepared, the benzene cyclohexadienyl ruthenium cation 236a, has been obtained together with the zero-valent arene cyclohexadiene ruthenium(O) complex 196a, by reaction of 235a with lithium aluminum hydride (118) [Eq. (27)]. [Pg.212]

Protonation of 322 with tetrafluoroboric acid in diethyl ether gives the cyclohexadienyl derivative 325 in 70% yield. Treatment of 325 with lithium aluminum hydride yields the biscyclohexadienyl osmium(II) complex 326. Treatment of 322 with PMe3 at 60°C gives the hydridophenyl osmium-(II) complex 181, rather than the expected arene bistrimethylphosphine osmium(O) compound, via intramolecular C—H bond activation of the benzene ligand (192,193) (Scheme 38). Compound 181 as well as the analogous ruthenium complex (92) have also been obtained directly by cocondensation of osmium or ruthenium atoms with benzene and tri-methylphosphine (62) [Eq. (44)]. [Pg.236]

Lithium aluminum hydride (LiAlH4, abbreviated LAH) is a much stronger reagent than sodium borohydride. It easily reduces ketones and aldehydes and also the less-reactive carbonyl groups those in acids, esters, and other acid derivatives (see Chapter 21). LAH reduces ketones to secondary alcohols, and it reduces aldehydes, acids, and esters to primary alcohols. The lithium salt of the alkoxide ion is initially formed, then the (cautious ) addition of dilute acid protonates the alkoxide. For example, LAH reduces both functional groups of the keto ester in the previous example. [Pg.455]


See other pages where Aluminum hydrides, 155. protonation is mentioned: [Pg.466]    [Pg.60]    [Pg.71]    [Pg.172]    [Pg.97]    [Pg.467]    [Pg.323]    [Pg.195]    [Pg.829]    [Pg.293]    [Pg.71]    [Pg.666]    [Pg.60]    [Pg.71]    [Pg.666]    [Pg.138]    [Pg.149]    [Pg.112]    [Pg.92]    [Pg.94]    [Pg.120]    [Pg.317]    [Pg.75]    [Pg.88]    [Pg.80]    [Pg.26]    [Pg.60]    [Pg.194]    [Pg.444]    [Pg.175]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Hydride Protons

Hydride protonation

© 2024 chempedia.info