Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium hydroxide thermal decomposition

Aluminium hydroxide is essentially non-toxic, but does require high addition levels to be effective. As a result, the physical properties of the compound usually suffer. Its fire retardancy action results from the endothermic reaction which releases water under fire conditions and produces a protective char . The endothermic reaction draws heat from the rubber/filler mass and thus reduces the thermal decomposition rate. The water release dilutes the available fuel supply, cooling the rubber surface and mass. [Pg.149]

Some of the best-known examples of this type of reaction are the thermal decomposition of hydroxides to give active oxide-hydroxides and oxides (see Section 10.3.6). Another example is the calcination of a carbonate (e.g. CaC03). In fact, BET areas of up to 500 m2 g-1 can be produced by the calcination of an aluminium trihydroxide. But, unless the heat treatment is carefully regulated, as in controlled rate thermal analysis (CRTA), the pore structure of the active product tends to be highly heterogeneous (Rouquerol and Ganteaume, 1977). [Pg.403]

The third route is defined as substractive (lUPAC), in that certain elements of an original structure are selectively removed to create pores. Examples include the formation of porous metal oxides by thermal decomposition of hydroxides, of porous glasses by chemical etching, of activated carbons by controlled pyrolysis, of ceramic foam membranes by burning off a polymer (e.g. polyurethane), of alumina by anodic oxidation of aluminium to give oriented cylindrical pores with a narrow size distribution. [Pg.70]

Cyclic Disulphides and Cyclic Diselenides.—Formation. No fundamentally new methods of synthesis of this class of compounds have been reported in the past two years. For l,2>dithiolan the oxidation of l,3>dithiols remains a favoured method, the use of iodine in the presence of triethylamine leading smoothly to 1,2-dithiolans without attendant polymerization. cis- and tra/ -l,2-Dithiolan-3,5-dicarboxylic acids were prepared from a diastereo-isomeric mixture of dimethyl 2,4-dibromoglutarates by sequential treatment with potassium thioacetate and potassium hydroxide in the presence of iodine,and jyn-2,3-dithiabicyclo[3,2,l]octan-8-ol was formed from 2,6-dibromocyclohexanone by successive treatment with potassium thiocyanate, lithium aluminium hydride, and iodine. The stereoselective formation of the less thermodynamically stable alcohol in this case was attributed partly to the formation of chelates with sulphur-aluminium bonds. 2,2-Dimethyl-l,3-dibromopropane was converted into 4,4-dimethyl-l,2-diselenolan on treatment with potassium selenocyanate at 175 °C, but at 140 °C the product was 3,3-dimethylselenetan. Reductive debenzylation of 2-alkylamino-l,3-bis(benzylthio)propanes with lithium in liquid ammonia and oxidation of the resultant dithiols with air afforded 4-dialkylamino-l,2-dithiolans, whilst treatment of a-bromomethyl-chalcone with sodium hydrosulphide gave, as minor product, trans-3 phenyl-4-benzoyl-l,2-dithiolan. Among the many products of thermal decomposition of /ra/ -2,4-diphenylthietan was l,4,5,7-tetraphenyl-2,3-dithiabicyclo [2,2,2]octane. ... [Pg.160]

Study of the formation and decomposition of aluminium sulphates has shown that low cost gibbsite can readily be converted to thermally stable washcoat alumina through the intermediate formation of the sulphate. Optimal reaction between hydroxidic aluminium starting materials and sulphuric acid occurred in the presence of water. A protective sulphate layer was formed on the surface of gibbsite on reaction with concentrated sulphuric acid which limited conversion. Higher conversion could be achieved by reaction with diluted acid. Conversion of the resultant aluminium sulphate to alumina was essentially complete on calcination at about 1000°C for 4 hours. [Pg.431]


See other pages where Aluminium hydroxide thermal decomposition is mentioned: [Pg.158]    [Pg.220]    [Pg.220]    [Pg.121]    [Pg.123]    [Pg.242]    [Pg.294]    [Pg.226]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Aluminium hydroxid

Aluminium hydroxide

Thermal decomposition

© 2024 chempedia.info