Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alumina iron diffusion through

Of course, if the protective scale of chromia or alumina is not penetrated by SO2, sulphide cannot form at the scale-metal interface. This was found for Ni-20 wt% Cr, Co-35 wt% Cr and Fe-35 wt% Cr alloys exposed to pure SO2 at 900 °C and emphasizes the resistance of a chromia scale to permeation. On the other hand, alloys in the Fe-Cr-Al, Ni-Cr-Al and Co-Cr-Al systems were exposed to atmospheres in the H2-H2S-H2O system. These atmospheres had compositions that supported the formation of chromia or alumina together with the sulphides of Fe, Ni and Co at the scale-metal interface. In these cases, a protective layer of chromia or alumina that formed initially was penetrated by sulphur to form iron, nickel, and cobalt sulphides at the scale-metal interface. Furthermore, iron, nickel, and cobalt ions apparently diffused through the oxide layer to form their sulphides on the outside of the protective scale. Thus the original protective scale was sandwiched between base-metal sulphides. [Pg.200]

The second stage in the carburisation process, that of carbon ingress through the protective oxide layer, is suppressed by the development of alumina or silica layers as already discussed and in some cases protective chromia scales can also form. Diffusion and solubility of carbon in the matrix has been shown by Schnaas et to be a minimum for binary Fe-Ni alloys with a nickel content of about 80<7o, and Hall has shown that increasing the nickel content for the nickel-iron-2S<7o-chromium system resulted in lower rates of carburisation (Fig. 7.54). [Pg.1078]


See other pages where Alumina iron diffusion through is mentioned: [Pg.162]    [Pg.41]    [Pg.87]    [Pg.792]    [Pg.213]    [Pg.417]    [Pg.168]    [Pg.304]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Alumina diffusivities

Diffusion through

Iron diffusion

© 2024 chempedia.info