Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alpha particles properties

Most chemical iavestigations with plutonium to date have been performed with Pu, but the isotopes Pu and Pu (produced by iatensive neutron irradiation of plutonium) are more suitable for such work because of their longer half-Hves and consequendy lower specific activities. Much work on the chemical properties of americium has been carried out with Am, which is also difficult to handle because of its relatively high specific alpha radioactivity, about 7 x 10 alpha particles/(mg-min). The isotope Am has a specific alpha activity about twenty times less than Am and is thus a more attractive isotope for chemical iavestigations. Much of the earher work with curium used the isotopes and Cm, but the heavier isotopes... [Pg.216]

Alpha carbon atoms, 348 Alpha decay, 417, 443 Alpha particle, 417 scattering, 245 Aluminum boiling point, 365 compounds, 102 heat of vaporization, 365 hydration energy, 368 hydroxide, 371 ionization energies, 269, 374 metallic solid, 365 occurrence, 373 properties, 101 preparation, 238. 373 reducing agent, 367 Alums, 403 Americium... [Pg.455]

The nuclear reactor also must be shielded against the emission of radioactive material to the external environment. Suitable radiation controls include both thermal and biological shielding systems. Radiation from alpha particles (a rays) and beta particles ((3 rays) has little penetrating power, but gamma rays have deep penetration properties. Neutron radiation is, however, the primary area of risk. Typically, extremely thick concrete walls are used as a neutron absorber, but lead-lined concrete and special concretes are also used. [Pg.63]

The numerical combination of protons and neutrons in most nuclides is such that the nucleus is quantum mechanically stable and the atom is said to be stable, i.e., not radioactive however, if there are too few or too many neutrons, the nucleus is unstable and the atom is said to be radioactive. Unstable nuclides undergo radioactive transformation, a process in which a neutron or proton converts into the other and a beta particle is emitted, or else an alpha particle is emitted. Each type of decay is typically accompanied by the emission of gamma rays. These unstable atoms are called radionuclides their emissions are called ionizing radiation and the whole property is called radioactivity. Transformation or decay results in the formation of new nuclides some of which may themselves be radionuclides, while others are stable nuclides. This series of transformations is called the decay chain of the radionuclide. The first radionuclide in the chain is called the parent the subsequent products of the transformation are called progeny, daughters, or decay products. [Pg.301]

Glenn Theodore Seaborg (1912-1999), together with Stanley Gerald Thompson (1912-1967) and Albert Ghiorso ( 1915). The bombardment of americium-241 with alpha particles led to element 97 with atomic mass number 243. The enrichment involved chemical methods, as the properties of the element were assumed to be analogous to those of the lanthanides. [Pg.84]

Ming, D.W. et al. 2008. Geochemical Properties of Rocks and Soils in Gusev crater, Mars Results of the Alpha Particle X-ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S39,... [Pg.302]

This set of parameters is chosen in order to reproduce the binding energy of the deuteron as well as of the alpha particle. The further properties, as the wave functions are assumed to be reasonable approximations in evaluating the density effects. [Pg.86]

Ideally, measuring radioactivity in water assets in the field would involve minimal sampling and sample preparation. However, the physical properties of specific types of radiation combined with the physical properties of water make evaluating radioactivity in water assets in the field somewhat difficult. For example, alpha particles can only travel short distances and they cannot penetrate through most physical objects. Therefore, instruments designed to evaluate alpha emissions must... [Pg.203]

The nuclear chemists at the Lawrence Berkeley Laboratory worked with extremely small samples of lawrencium with short half-lives, which made it difficult to determine the new elements chemical and physical properties. Most of its isotopes spontaneously fission as they give off alpha particles (helium nuclei). Lawrencium s melting point is about 1,627°C, but its boiling point and density are unknown. [Pg.336]

In 1940 D. R. Corson, K. R. Mackenzie, and E. Segre at the University of California bombarded bismuth with alpha particles (26, 27). Preliminary tracer studies indicated that they had obtained element 85, which appeared to possess metallic properties. The pressure of war work prevented a continuation of these studies at the time. After the war, the investigators resumed their work, and in 1947 proposed the name astatine, symbol At, for their element. The name comes from the Greek word for unstable, since this element is the only halogen without stable isotopes (28). The longest lived isotope is At210 with a half-life of 8.3 hours and a very high activity. [Pg.865]

A series of episodes in the historical development of our view of chemical atoms are presented. Emphasis is placed on the key observations that drove chemists and physicists to conclude that atoms were real objects and to envision their stracture and properties. The kinetic theory of gases and measmements of gas transport yielded good estimates for atomic size. The discovery of the electrorr, proton and neutron strongly irtfluenced discttssion of the constitution of atoms. The observation of a massive, dertse nucleus by alpha particle scattering and the measrrrement of the nuclear charge resrrlted in an enduring model of the nuclear atom. The role of optical spectroscopy in the development of a theory of electronic stracture is presented. The actors in this story were often well rewarded for their efforts to see the atoms. [Pg.90]

Uranium-238 emits an alpha particle to become an isotope of thorium. This unstable element emits a beta particle to become the element now known as Protactinium (Pa), which then emits another beta particle to become an isotope of uranium. This chain proceeds through another isotope of thorium, through radium, radon, polonium, bismuth, thallium and lead. The final product is lead-206. The series that starts with thorium-232 ends with lead-208. Soddy was able to isolate the different lead isotopes in high enough purity to demonstrate using chemical techniques that the atomic weights of two samples of lead with identical chemical and spectroscopic properties had different atomic weights. The final picture of these elements reveals that there are several isotopes for each of them. [Pg.96]


See other pages where Alpha particles properties is mentioned: [Pg.11]    [Pg.225]    [Pg.261]    [Pg.244]    [Pg.1028]    [Pg.56]    [Pg.18]    [Pg.19]    [Pg.28]    [Pg.301]    [Pg.305]    [Pg.121]    [Pg.161]    [Pg.258]    [Pg.351]    [Pg.160]    [Pg.167]    [Pg.26]    [Pg.818]    [Pg.243]    [Pg.93]    [Pg.200]    [Pg.765]    [Pg.989]    [Pg.1209]    [Pg.96]    [Pg.103]    [Pg.63]    [Pg.273]    [Pg.246]    [Pg.528]    [Pg.209]    [Pg.564]    [Pg.216]    [Pg.225]    [Pg.511]    [Pg.442]   
See also in sourсe #XX -- [ Pg.110 , Pg.110 , Pg.111 ]




SEARCH



Alpha particles

Particle properties

© 2024 chempedia.info