Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic compounds reactions

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

Reactions of Allylic Compounds via 7r-Allylpalladium Complexes Catalyzed by Pd(0)... [Pg.290]

Reaction Patterns and Various Allylic Compounds Used for Catalytic Reactions... [Pg.290]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

In addition to the catalytic allylation of carbon nucleophiles, several other catalytic transformations of allylic compounds are known as illustrated. Sometimes these reactions are competitive with each other, and the chemo-selectivity depends on reactants and reaction conditions. [Pg.291]

Mainly allylic esters are used as the substrates for the catalytic reactions. In addition, the allylic compounds shown are known to react with Pd(0) to form TT-allylpalladium complexes. Even allylic nitro compounds[8,9] and sul-fones[KM2] are used for the allylation. The reactivities of these allylic compounds arc very different. [Pg.291]

Asymmetric allylation of carbon nucleophiles has been carried out extensively using Pd catalysts coordinated by various chiral phosphine ligands and even with nitrogen ligands, and ee > 90% has been achieved in several cases. However, in most cases, a high ee has been achieved only with the l,3-diaryl-substitiitcd allylic compounds 217, and the synthetic usefulness of the reaction is limited. Therefore, only references are cited[24,133]. [Pg.319]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

Allylic metal compounds useful for further transformations can be prepared by Pd-catalyzed reactions of allylic compounds with bimetallic reagents. By this transformation, umpolung of nucleophilic 7r-allylpalladium complexes to electrophilic allylmetal species can be accomplished. Transfer of an allyl moiety from Pd to Sn is a typical umpolung. [Pg.353]

When allylic compounds are treated with Pd(0) catalyst in the absence of any nucleophile, 1,4-elimination is a sole reaction path, as shown by 492, and conjugated dienes are formed as a mixture of E and Z isomers[329]. From terminal allylic compounds, terminal conjugated dienes are formed. The reaction has been applied to the syntheses of a pheromone, 12-acetoxy-1,3-dode-cadiene (493)[330], ambergris fragrance[331], and aklavinone[332]. Selective elimination of the acetate of the cyanohydrin 494 derived from 2-nonenal is a key reaction for the formation of the 1,3-diene unit in pellitorine (495)[333], Facile aromatization occurs by bis-elimination of the l,4-diacetoxy-2-cyclohex-ene 496[334],... [Pg.356]

BU3P. A rapid redox reaction takes place to yield the active Pd(0) species and tributylphosphine oxide. The Pd(0) thus generated is a phosphine-free cata-lyst[341]. Severe reaction conditions are necessary, or no reaction takes place, when Pd2(dba)3 is used in the elimination reaction of cyclic allylic compounds with an excess of -Bu3P[342]. [Pg.361]

The rearrangements of various allylic compounds catalyzed by both Pd(II) and Pd(0) are treated in this section[491]. Related reactions such as the Carroll rearrangement are treated in Section 2.10.1 and the Pd(II)-catalyzed Cope rearrangement is treated in Chapter 5, Section 3. [Pg.399]


See other pages where Allylic compounds reactions is mentioned: [Pg.6]    [Pg.293]    [Pg.295]    [Pg.301]    [Pg.305]    [Pg.315]    [Pg.318]    [Pg.319]    [Pg.320]    [Pg.321]    [Pg.325]    [Pg.327]    [Pg.331]    [Pg.333]    [Pg.335]    [Pg.339]    [Pg.343]    [Pg.345]    [Pg.347]    [Pg.349]    [Pg.351]    [Pg.355]    [Pg.359]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.367]    [Pg.367]    [Pg.369]    [Pg.371]    [Pg.373]    [Pg.375]    [Pg.379]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.397]   


SEARCH



Allyl compounds

Allylic compounds

© 2024 chempedia.info