Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alcohols epoxide rearrangement

Synthesis of P-Keto Sulfoxides. Optically active p-keto sulfoxides are very useful building blocks (eq 4) because they can be stereoselectively reduced to afford either diastereomer of the corresponding p-hydroxy sulfoxide under appropriate conditions (Diisobutylaluminum Hydride or Zinc ChloridefDlBALf and thus give access to a wide variety of compounds chiral carbinols by desulfurization with Raney Nickel or LithiumJethyhmme ini the case of allylic alcohols epoxides via cyclization of the derived sulfonium salt butenolides by alkylation of the hydroxy sulfoxide 1,2-diols via a Pummerer rearrangement followed by reduction of the intermediate. ... [Pg.440]

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

Hydroxyl groups are stable to peracids, but oxidation of an allylic alcohol during an attempted epoxidation reaction has been reported." The di-hydroxyacetone side chain is usually protected during the peracid reaction, either by acetylation or by formation of a bismethylenedioxy derivative. To obtain high yields of epoxides it is essential to avoid high reaction temperatures and a strongly acidic medium. The products of epoxidation of enol acetates are especially sensitive to heat or acid and can easily rearrange to keto acetates. [Pg.10]

Titanium-IV compounds with their Lewis acid activity may catalyze an interfering rearrangement of the starting allylic alcohol or the epoxy alcohol formed. In order to avoid such side-reactions, the epoxidation is usually carried out at room temperature or below. [Pg.256]

A careful analysis of this problem led to the identification of an exceedingly simple solution (see Scheme 10). The Masamune-Sharpless solution to the threo 2,3-diol problem actually takes advantage of the ready availability of the erythro 2,3-diol diastereoisomer. As we have seen in Scheme 9, erythro 2,3-diols such as 20 can be conveniently assembled from trans allylic alcohols via sequential SAE and Payne rearrangement/epoxide opening reac-... [Pg.303]

N,O-acetal intermediate 172, y,<5-unsaturated amide 171. It is important to note that there is a correspondence between the stereochemistry at C-41 of the allylic alcohol substrate 173 and at C-37 of the amide product 171. Provided that the configuration of the hydroxyl-bearing carbon in 173 can be established as shown, then the subsequent suprafacial [3,3] sigmatropic rearrangement would ensure the stereospecific introduction of the C-37 side chain during the course of the Eschenmoser-Claisen rearrangement, stereochemistry is transferred from C-41 to C-37. Ketone 174, a potential intermediate for a synthesis of 173, could conceivably be fashioned in short order from epoxide 175. [Pg.607]

The (3-elimination of epoxides to allylic alcohols on treatment with strong base is a well studied reaction [la]. Metalated epoxides can also rearrange to allylic alcohols via (3-C-H insertion, but this is not a synthetically useful process since it is usually accompanied by competing a-C-H insertion, resulting in ketone enolates. In contrast, aziridine 277 gave allylic amine 279 on treatment with s-BuLi/(-)-spar-teine (Scheme 5.71) [97]. By analogy with what is known about reactions of epoxides with organolithiums, this presumably proceeds via the a-metalated aziridine 278 [101]. [Pg.178]

BASE-INDUCED REARRANGEMENT OF EPOXIDES TO ALLYLIC ALCOHOLS trans-Pinocarveol,... [Pg.55]

TT-ALLYLNICKEL HALIDES METHALLYLBENZENE, 52, 115 Rearrangement of epoxides to allylic alcohols, 53, 17 Reduction, by controlled-po-tential electrolysis, 52, 22 by lithium aluminum hydride of exo-3,4-dichlorobicyclo [3.2.l]oct-2-ene to 3-chlorobicyclo[3.2.l]oct-2-ene, 51, 61... [Pg.135]

The MABR-promoted rearrangement, when applied to optically active epoxy substrates, has been shown to proceed with rigorous transfer of the epoxide chirality. Accordingly, used in combination with the Sharpless asymmetric epoxidation of allylic alcohols,5 this rearrangement represents a new approach to the synthesis of various... [Pg.203]

The desymmetrization works also well with higher substituted meio-epoxides such as ewdo-norbornene oxide (130) , cis-5,6- and 4,7-difunctionalized cyclooctene oxides 132 and 134, giving the alcohols 131, 133 and 135, respectively but for the diastereomer 136, the rearrangement to form the allylic alcohol 138 beside 137 cannot be completely suppressed (equation 29 best results are given). ... [Pg.1083]

AUyl transfer reactions, 73, 1 Allylic alcohols, synthesis from epoxides, 29, 3 by Wittig rearrangement, 46, 2 Allylic and benzylic carbanions, heteroatom-substituted, 27, 1 Allylic hydroperoxides, in... [Pg.584]

Isomerization of primary allylic alcohols proceeds in dichloromethane at 25 °C in the presence of a catalyst prepared in situ from VO(acac)2 or Mo02(acac)2 and BTSP to give tertiary isomers in good yields. This is in sharp contrast to the well-known Sharpless epoxidation of allylic alcohols. The catalysts are also effective for rearrangements of secondary-tertiary allylic alcohols. The isomerization of an allenyl allylic... [Pg.789]

Rearrangement of an achiral epoxide to give an optically active allyl alcohol, e.g., 1, induced by enantioselective deprotonation with a homochiral base (see p 436 for the determination of absolute configuration)55. [Pg.401]

Enantioselective deprotonation.2 The rearrangement of epoxides to allylic alcohols by lithium dialkylamides involves removal of the proton syn to the oxygen.3 When a chiral lithium amide is used with cyclohexene oxide, the optical yield of the resulting allylic alcohol is 3-31%, the highest yield being obtained with 1. [Pg.245]


See other pages where Allylic alcohols epoxide rearrangement is mentioned: [Pg.252]    [Pg.303]    [Pg.309]    [Pg.313]    [Pg.264]    [Pg.302]    [Pg.13]    [Pg.529]    [Pg.907]    [Pg.230]    [Pg.217]    [Pg.281]    [Pg.525]    [Pg.567]    [Pg.590]    [Pg.591]    [Pg.25]    [Pg.1169]    [Pg.1176]    [Pg.190]    [Pg.1090]    [Pg.167]    [Pg.1090]    [Pg.38]    [Pg.1073]    [Pg.404]   
See also in sourсe #XX -- [ Pg.412 , Pg.413 , Pg.414 , Pg.415 , Pg.416 , Pg.417 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.423 ]




SEARCH



Alcohols epoxidation

Alcohols rearrangement

Allyl alcohols rearrangement

Allyl rearrangement

Allylic alcohols rearrangement

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Allylic rearrangement

Epoxidation allyl alcohol

Epoxidation allylic alcohols

Epoxidation rearrangement

Epoxidations allylic alcohols

Epoxide alcohol

Epoxides allylation

Epoxides rearrangements

Rearrangements Epoxide

© 2024 chempedia.info