Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloys physical properties

See also Potassium-sodium (NaK) alloys physical properties of, 20 604t Naked license, 25 265 AT-aldehydes, platinum-group metal catalysts and, 19 621 Naled, 4 358t... [Pg.609]

Table 6.3 Selected metal alloy physical properties (Jones et al., 2007)... Table 6.3 Selected metal alloy physical properties (Jones et al., 2007)...
Magnetic and mechanical properties were measured by [1932Koe2]. Brinell hardness, eoereivity and magnetic remanence were measured. [1985Koz] measured the microhardness of modulated sfructures in die metastable spinodal alloys. Physical property investigations are listed in Table 5. [Pg.651]

Temary and quaternary semiconductors are theoretically described by the virtual crystal approximation (VGA) [7], Within the VGA, ternary alloys with the composition AB are considered to contain two sublattices. One of them is occupied only by atoms A, the other is occupied by atoms B or G. The second sublattice consists of virtual atoms, represented by a weighted average of atoms B and G. Many physical properties of ternary alloys are then expressed as weighted linear combinations of the corresponding properties of the two binary compounds. For example, the lattice constant d dependence on composition is written as ... [Pg.2880]

Homogeneous alloys have a single glass transition temperature which is determined by the ratio of the components. The physical properties of these alloys are averages based on the composition of the alloy. [Pg.1014]

Low Expansion Alloys. Binary Fe—Ni alloys as well as several alloys of the type Fe—Ni—X, where X = Cr or Co, are utilized for their low thermal expansion coefficients over a limited temperature range. Other elements also may be added to provide altered mechanical or physical properties. Common trade names include Invar (64%Fe—36%Ni), F.linvar (52%Fe—36%Ni—12%Cr) and super Invar (63%Fe—32%Ni—5%Co). These alloys, which have many commercial appHcations, are typically used at low (25—500°C) temperatures. Exceptions are automotive pistons and components of gas turbines. These alloys are useful to about 650°C while retaining low coefficients of thermal expansion. Alloys 903, 907, and 909, based on 42%Fe—38%Ni—13%Co and having varying amounts of niobium, titanium, and aluminum, are examples of such alloys (2). [Pg.122]

Physical Properties. An overview of the metallurgy (qv) and soUd-state physics of the rare earths is available (6). The rare earths form aUoys with most metals. They can be present interstitiaUy, in soUd solutions, or as intermetaUic compounds in a second phase. Alloying with other elements can make the rare earths either pyrophoric or corrosion resistant. It is extremely important, when determining physical constants, that the materials are very pure and weU characteri2ed. AU impurity levels in the sample should be known. Some properties of the lanthanides are Usted in Table 3. [Pg.540]

Table 4. Chemical Compositions and Physical Properties of Magnesium Cast and Wrought Alloys ... Table 4. Chemical Compositions and Physical Properties of Magnesium Cast and Wrought Alloys ...
Nickel occurs in the first transition row in Group 10 (VIIIB) of the Periodic Table. Some physical properties are given in Table 1 (1 4). Nickel is a high melting point element having a ductile crystal stmcture. Its chemical properties allow it to be combined with other elements to form many alloys. [Pg.1]

Potassium, a soft, low density, silver-colored metal, has high thermal and electrical conductivities, and very low ionization energy. One useful physical property of potassium is that it forms Hquid alloys with other alkah metals such as Na, Rb, and Cs. These alloys have very low vapor pressures and melting points. [Pg.515]

Fig. 1. Schematic of the hysteresis loop associated with a shape-memory alloy transformation, where M. and Afp correspond to the martensite start and finish temperatures, respectively, and and correspond to the start and finish of the reverse transformation of martensite, respectively. The physical property can be volume, length, electrical resistance, etc. On cooling the body-centered cubic (bcc) austenite (parent) transforms to an ordered B2 or E)02... Fig. 1. Schematic of the hysteresis loop associated with a shape-memory alloy transformation, where M. and Afp correspond to the martensite start and finish temperatures, respectively, and and correspond to the start and finish of the reverse transformation of martensite, respectively. The physical property can be volume, length, electrical resistance, etc. On cooling the body-centered cubic (bcc) austenite (parent) transforms to an ordered B2 or E)02...
Calcium—Silicon. Calcium—silicon and calcium—barium—siUcon are made in the submerged-arc electric furnace by carbon reduction of lime, sihca rock, and barites. Commercial calcium—silicon contains 28—32% calcium, 60—65% siUcon, and 3% iron (max). Barium-bearing alloys contains 16—20% calcium, 9—12% barium, and 53—59% sihcon. Calcium can also be added as an ahoy containing 10—13% calcium, 14—18% barium, 19—21% aluminum, and 38—40% shicon These ahoys are used to deoxidize and degasify steel. They produce complex calcium shicate inclusions that are minimally harm fill to physical properties and prevent the formation of alumina-type inclusions, a principal source of fatigue failure in highly stressed ahoy steels. As a sulfide former, they promote random distribution of sulfides, thereby minimizing chain-type inclusions. In cast iron, they are used as an inoculant. [Pg.541]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

The durabihty and versatility of steel are shown by its wide range of mechanical and physical properties. By the proper choice of carbon content and alloying elements, and by suitable heat treatment, steel can be made so soft and ductile that it can be cold-drawn into complex shapes such as automobile bodies. Conversely, steel can be made extremely hard for wear resistance, or tough enough to withstand enormous loads and shock without deforming or breaking. In addition, some steels are made to resist heat and corrosion by the atmosphere and by a wide variety of chemicals. [Pg.373]

Above 40 wt % hydrogen content at room temperature, zirconium hydride is brittle, ie, has no tensile ductiHty, and it becomes more friable with increasing hydrogen content. This behavior and the reversibiHty of the hydride reaction are utilized ki preparing zirconium alloy powders for powder metallurgy purposes by the hydride—dehydride process. The mechanical and physical properties of zirconium hydride, and thek variation with hydrogen content of the hydride, are reviewed in Reference 127. [Pg.433]

Barium is a member of the aLkaline-earth group of elements in Group 2 (IIA) of the period table. Calcium [7440-70-2], Ca, strontium [7440-24-6], Sr, and barium form a closely aUied series in which the chemical and physical properties of the elements and thek compounds vary systematically with increa sing size, the ionic and electropositive nature being greatest for barium (see Calcium AND CALCIUM ALLOYS Calcium compounds Strontium and STRONTIUM compounds). As size increases, hydration tendencies of the crystalline salts increase solubiUties of sulfates, nitrates, chlorides, etc, decrease (except duorides) solubiUties of haUdes in ethanol decrease thermal stabiUties of carbonates, nitrates, and peroxides increase and the rates of reaction of the metals with hydrogen increase. [Pg.475]

Table 4. Physical Properties of Cast and Wrought Beryllium Copper Alloys... Table 4. Physical Properties of Cast and Wrought Beryllium Copper Alloys...

See other pages where Alloys physical properties is mentioned: [Pg.91]    [Pg.78]    [Pg.91]    [Pg.78]    [Pg.345]    [Pg.238]    [Pg.340]    [Pg.385]    [Pg.518]    [Pg.109]    [Pg.110]    [Pg.119]    [Pg.119]    [Pg.324]    [Pg.371]    [Pg.496]    [Pg.496]    [Pg.18]    [Pg.18]    [Pg.136]    [Pg.25]    [Pg.202]    [Pg.518]    [Pg.80]    [Pg.86]    [Pg.370]    [Pg.102]    [Pg.381]    [Pg.413]    [Pg.70]    [Pg.444]    [Pg.452]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Alloys, interstitial, 147 --- physical properties

Aluminum alloys corrosion physical properties

Cast aluminum alloys physical properties

Cast copper alloys physical properties

Nickel alloys physical properties

Phosphorus, Alloys Physical properties

Wrought copper alloys physical properties

Zinc alloys physical properties

© 2024 chempedia.info