Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allenes electrophilic addition reactions

Electrophilic additions to allenes represent an interesting reaction type which is related to additions to both alkenes and alkynes. An allene could, for example, conceivably be protonated at either a terminal s[p- carbon or the central sp carbon. [Pg.376]

All of the above mentioned examples of vinyl cation intermediates have involved electrophilic additions to triple bonds or allenes or participation in solvolyses of such multiple bonds. In a sense, these reactions derive from analogies in normal... [Pg.242]

The discovery of carbene and carbenoid additions to olefins was the major breakthrough that initiated the tapping of this structural resource for synthetic purposes. Even so, designed applications of cyclopropane chemistry in total syntheses remain limited. Most revolve around electrophilic type reactions such as acid induced ring opening or solvolysis of cyclopropyl carbinyl alcohol derivatives. One notable application apart from these electrophilic reactions is the excellent synthesis of allenes from dibromocyclopropanes 2). [Pg.10]

The attack of the nucleophile on the acceptor-substituted allene usually happens at the central sp-hybridized carbon atom. This holds true also if no nucleophilic addition but a nucleophilic substitution in terms of an SN2 reaction such as 181 — 182 occurs (Scheme 7.30) [245]. The addition of ethanol to the allene 183 is an exception [157]. In this case, the allene not only bears an acceptor but shows also the substructure of a vinyl ether. A change in the regioselectivity of the addition of nucleophilic compounds NuH to allenic esters can be effected by temporary introduction of a triphenylphosphonium group [246]. For instance, the ester 185 yields the phos-phonium salt 186, which may be converted further to the ether 187. Evidently, the triphenylphosphonium group induces an electrophilic character at the terminal carbon atom of 186 and this is used to produce 187, which is formally an abnormal product of the addition of methanol to the allene 185. This method of umpolung is also applicable to nucleophilic addition reactions to allenyl ketones in a modified procedure [246, 247]. [Pg.383]

Less common addition reactions such as the bromination of trifhioromethyl-substi-tuted butatrienes [30] or the reaction of tetrafluoroallene with boron trifluoride have also been reported [283]. Especially the interaction of phosphorylated allenes with electrophiles was summarized in a review by Alabugin and Brel [8], whereas Smadja [284] published a more general overview about the electrophilic addition to allenic derivatives. [Pg.392]

The examples illustrated in the almost 100 schemes in this chapter demonstrate how versatile donor-substituted allenes can be in synthetic processes. The major applications concern addition reactions and cycloadditions to the allenic double bonds, which furnish products with valuable functional groups. Of particular interest are metalations - usually at C-l of the allene unit - followed by reactions with electrophiles that deliver compounds which can often be used for cyclization reactions. A variety of highly substituted and functionalized heterocycles arises from these flexible methods, which cannot be obtained by other reactions. Many of these transformations proceed with good regioselectivity and excellent stereoselection. [Pg.485]

As in the case of addition reactions of carbon nucleophiles to activated dienes (Section HA), organocopper compounds are the reagents of choice for regio- and stereoselective Michael additions to acceptor-substituted enynes. Substrates bearing an acceptor-substituted triple bond besides one or more conjugated double bonds react with organocuprates under 1,4-addition exclusively (equation 51)138-140 1,6-addition reactions which would provide allenes after electrophilic capture were not observed (cf. Section IV). [Pg.670]

If the addition involves an alkynyllithium such as 34, the first-formed alkoxide intermediate 35 isomerizes into the propargylic-allenic lithium reagent. Reactions with electrophiles lead to either 36a or the allenol silyl ethers 36b (equation 13). ... [Pg.465]

Fluorinated carbocations play an important role as intermediates in electrophilic reactions of fluoroolefins and other unsaturated compounds. For example, F-allyl cation 1 was proposed as a reactive intermediate in reactions of HFP with fluoroolefins catalyzed by Lewis acids [7]. The difference in stability of the corresponding allylic cations was suggested as the explanation for regio-specific electrophilic conjugated addition to CF2=CC1CF=CF2 [11]. Allylic polyfluorinated carbocations were proposed as intermediates in the reactions of terminal allenes with HF [53] and BF3 [54], ring-opening reactions of cyclopropanes [55], Carbocations are also an important part of the classic mechanism of electrophilic addition to olefins (see Eq. 2). This section deals with the questions of existence and stability of poly- and perfluorinated carbocations. [Pg.53]

Treatment of 1-bromoallenyl ethyl ester 869 with bromine leads to 3,4,5-tribromo-6,6-dimethyl-3,6-dihydropyran-2-one 871. The reaction proceeds through initial electrophilic addition of bromine to the central allene carbon atom and cyclization of the resulting carbenium bromide furnishing the intermediate 870. Further reaction with bromine followed by loss of FIBr affords the 3,6-dihydropyran-2-one 871 (Scheme 240) <1996LA171>. [Pg.613]

Similar to the addition reactions of acceptor-substituted dienes (Scheme 16), the outcome of the transformation depends on the regioselectivity of the nucleophilic attack of the organocopper reagent (1,4- vs. 1,6-addition) and of the electrophilic capture of the enolate formed. The allenyl enolate obtained by 1,6-addition can afford either a conjugated diene or an allene upon reaction with a soft electrophile, and thus opens up the possibility to create axial chirality. The first copper-mediated addition reactions to Michael acceptors of this type, for example, 3-alkynyl-2-cyclopentenone 75,... [Pg.510]

A number of useful enantioselective syntheses can be performed by attaching a chiral auxihary group to the selenium atom of an appropriate reagent. Examples of such chiral auxiliaries include (49-53). Most of the asymmetric selenium reactions reported to date have involved inter- or intramolecular electrophilic additions to alkenes (i.e. enantioselective variations of processes such as shown in equations (23) and (15), respectively) but others include the desymmefrization of epoxides by ringopening with chiral selenolates, asymmetric selenoxide eliminations to afford chiral allenes or cyclohexenes, and the enantioselective formation of allylic alcohols by [2,3]sigmafropic rearrangement of allylic selenoxides or related species. [Pg.4326]

Ethynyl carbinols (propargylic alcohols) such as 134 (Scheme 2.58) represent another important group of oxidation level 3 compounds. Their preparation involves nucleophilic addition of acetylides to the carbonyl group, a reaction that is nearly universal in its scope. Elimination of water from 134 followed by hydration of the triple bond is used as a convenient protocol for the preparation of various conjugated enones 135. Easily prepared O-acylated derivatives are extremely useful electrophiles in reactions with organocuprates, which proceed with propargyl-allenyl rearrangements to furnish allene derivatives 136. [Pg.109]

Selenenyl chlorides add to alkenes, often via an Ade2 mechanism involving a bridged seleniranium ion intermediate " (19) (equation 14). These reactions are therefore highly stereospecific, resulting in anti addition. The regiochemistry of the process can be under either kinetic or thermodynamic control. In some cases, initial anti-Markovnikov products were observed at low temperature and Markovnikov adducts dominated after further equilibration. Analogous electrophilic additions to acetylenes and allenes (Scheme 9) have also been reported. When selenenyl halides react with alkenes in the presence of other nucleophiles such... [Pg.4320]

The reactions of perfluoroisobutene with sodium salts of malonic esters are difficult to control, owing to rearrangement and base catalysed cyclization, but when the complex BFs NEts is used as HF acceptor, condensation is readily controlled (see Scheme 15 and p. 99) and yields of up to 50% of allene (39) obtained. Antimony pentaliuoride catalyses the electrophilic addition of acid fluorides to 1,1-difluoro- and trifluoro-ethylene. Propiophenones, PhCO CHX-CFs (X = H or F), are obtained from benzoyl fluoride, but with acetyl fluoride, further condensation occurs, and trifluoroethylene yields the jS-diketone, CF3-CHF-CO-CH2Ac. ... [Pg.68]


See other pages where Allenes electrophilic addition reactions is mentioned: [Pg.1409]    [Pg.62]    [Pg.73]    [Pg.390]    [Pg.439]    [Pg.638]    [Pg.101]    [Pg.102]    [Pg.101]    [Pg.102]    [Pg.287]    [Pg.359]    [Pg.511]    [Pg.595]    [Pg.617]    [Pg.595]    [Pg.617]    [Pg.124]    [Pg.638]    [Pg.27]    [Pg.638]    [Pg.670]    [Pg.980]    [Pg.980]    [Pg.262]    [Pg.17]   
See also in sourсe #XX -- [ Pg.545 ]




SEARCH



Addition reactions electrophilic

Allene reaction

Allene, electrophilic additions

Allenes addition

Allenes addition reactions

Allenes electrophilic addition

Allenes reactions

Electrophiles Addition reactions

© 2024 chempedia.info