Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allenes, cycloadducts

Computational investigations demonstrate substrate-dependent changes in the ring-rearrangement metathesis (RRM) of Himbert arene/allene cycloadducts to form fused polycylic lactams (Scheme 115). (g)... [Pg.563]

For example, the most reactive of the allenes, 1,1 -difluoroallene, reacts at room temperature with nitrones, nitrile oxides, and diazoalkanes to give cycloadducts in high yield [22, 23, 24, 25] (equation 15)... [Pg.803]

Four-membered heterocycles are easily formed via [2-I-2] cycloaddition reac tions [65] These cycloaddmon reactions normally represent multistep processes with dipolar or biradical intermediates The fact that heterocumulenes, like isocyanates, react with electron-deficient C=X systems is well-known [116] Via this route, (1 lactones are formed on addition of ketene derivatives to hexafluoroacetone [117, 118] The presence of a trifluoromethyl group adjacent to the C=N bond in quinoxalines, 1,4-benzoxazin-2-ones, l,2,4-triazm-5-ones, and l,2,4-tnazin-3,5-diones accelerates [2-I-2] photocycloaddition processes with ketenes and allenes [106] to yield the corresponding azetidine derivatives Starting from olefins, fluonnaied oxetanes are formed thermally and photochemically [119, 120] The reaction of 5//-l,2-azaphospholes with fluonnated ketones leads to [2-i-2j cycloadducts [121] (equation 27)... [Pg.853]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

Alcaide, Aknendros and coworkers developed a combination of a 3,3-sigmatropic rearrangement of the methanesulfonate of an a-allenic alcohol to give a 1,3-bu-tadiene which is intercepted by a dienophile present in the molecule to undergo an intramolecular Diels-Alder reaction [83]. Thus, on treatment of 4-236 with CH3S02C1, the methanesulfonate was first formed as intermediate, and at higher temperature this underwent a transposition to give 4-237 (Scheme 4.51). This then led directly to the cycloadduct 4-238 via an exo transition state. [Pg.314]

Enol ether additives were used to probe the protonation of 3-cyclopen-tenylidene (127). Treatment of A-nitroso-A-(2-vinylcyclopropyl)urea (124) with sodium methoxide generates 2-vinylcyclopropylidene (126) by way of the labile diazo compound 125 (Scheme 25). For simplicity, products derived directly from 126 (allene, ether, cycloadduct) are not shown in Scheme 25. The Skat-tebpl rearrangement of 126 generates 127 whose protonation leads to the 3-cyclopentenyl cation (128). In the presence of methanol, cyclopentadiene (130) and 3-methoxycyclopentene (132) were obtained.53 With an equimolar mixture of methyl vinyl ether and methanol, cycloaddition of 127 (—> 131)... [Pg.15]

A synthetic approach to hyperevolutin A 421, prenylated bicyclo[3.3.1] nonanone derivative, with an acylated phloroglucinol-type fragment, has been described (464). Intramolecular allene-nitrile oxide cycloaddition of 422 has been used to construct the bicyclic framework and the vicinal quaternary centers in cycloadduct 423. [Pg.92]

The reaction with silyl enol ethers 3f and 3g gave only the [3 + 2] cycloadducts in comparison with effective formation of acyclic adduct 15 in the reaction with ketene silyl acetals 3a and 3e at lower reaction temperature. This can be explained by the reactivity of cationic intermediates 19 the intermediates from 3f and 3g are more reactive owing to lower stabilization by the oxy group than those from 3a and 3e, and react with the internal allene more efficiently to give the cycloadduct(s). Cyclic product 17a could be obtained at higher temperature via the reaction of 3a (entry 2). [Pg.112]

The treatment of 23 with methyllithium in the presence of furan gave rise to the tetracyclic product 26, which is obviously a [4 + 2]-cycloadduct of furan to the 1,2-cyclopentadiene derivative 25 [27]. The feature that the oxanorbornene system of 26 carries its saturated substituent in the endo-position is analogous to the [4 + 2]-cycloadducts of furan to all six-membered cyclic allenes (see Section 6.3). Balci et al. [36] also provided evidence for the generation of l-phenyl-l,2-cyclopentadiene. They postulated this species to be an intermediate in the reaction of l-phenyl-2-iodocydo-pentene with potassium tert-butoxide in benzene at 240 °C, which resulted in the formation of 1-phenyl- and 1,2-diphenylcyclopentene. Both products were considered as evidence in favor of the diradical nature rather than the allene structure of 1-phe-nyl-1,2 -cyclopentadiene. [Pg.247]

The positional selectivity on formation of the cydoadducts from 221 is less pronounced than that of the isobenzene 162, but it is the conjugated double of the allene moiety as well that predominantly undergoes the reaction. As demonstrated by the thermolysis of several products, these are formed from 221 under kinetic control. For example, on heating, the styrene adduct 240 and the furan adduct 231 rearranged virtually completely to 241 and 232, which are formally the cycloadducts to the non-conjugated double bond of the allene subunit of 221 [92, 137]. The cause of the selectivity may be the spin-density distribution in the phenylallyl radical entity of the diradical intermediates. [Pg.288]

By chance, the existence of the borane complex 330 of 329 was discovered. The liberation of 330 occurred with the best efficiency with sodium bis(trimethylsilyl)-amide from the borane complex 327 of 326. When styrene or furan was used as the solvent, three diastereomeric [2 + 2]-cycloadducts 328 and [4 + 2]-cycloadducts 331, respectively, were obtained in 30and 20% yield (Scheme 6.70) [156]. With no lone pair on the nitrogen atom, 330 cannot be polarized towards a zwitterionic structure, which is why its allene subunit, apart from the inductive effect of the nitrogen atom, resembles that of 1,2-cydohexadiene (6) and hence undergoes cycloaddition with activated alkenes. It is noted that the carbacephalosporin derivative 323 (Scheme 6.69) also does not have a lone pair on the nitrogen atom next to the allene system because of the amide resonance. [Pg.302]

Scheme 6.88 Silylenol ethers and silyl keteneacetals that were used to trap the cyclic allene 417. The [2+ 2]-cycloadducts such as 435 were converted into products of the type 436. Scheme 6.88 Silylenol ethers and silyl keteneacetals that were used to trap the cyclic allene 417. The [2+ 2]-cycloadducts such as 435 were converted into products of the type 436.
Scheme 6.89 [2 + 2]-Cycloadducts ofthe cyclic allene 417 with acetylenes, according to Elliott and co-workers. Scheme 6.89 [2 + 2]-Cycloadducts ofthe cyclic allene 417 with acetylenes, according to Elliott and co-workers.
Being a diastereomer of 450 with respect to the configuration of the sulfur atom, 458 was liberated from the triflate 457 by ethyl diisopropylamine and trapped by furan (Scheme 6.93). The resulting [4+ 2]-cycloadduct 459 was isolated in 62% yield and is a diastereomer of 451 [155, 171b], Typical for virtually all furan adducts of six-membered cyclic allenes, 451 and 459 display the mdo-configuration with respect to the 7-oxanorbornene skeleton. [Pg.323]

Concerning the structure, the cyclopropane derivatives 524—526 deviate from the generally observed cycloadducts of cyclic allenes with monoalkenes (see Scheme 6.97 and many examples in Section 6.3). The difference is caused by the different properties of the diradical intermediates that are most likely to result in the first reaction step. In most cases, the allene subunit is converted in that step into an allyl radical moiety that can cyclize only to give a methylenecyclobutane derivative. However, 5 is converted to a tropenyl-radical entity, which can collapse with the radical center of the side-chain to give a methylenecyclobutane or a cyclopropane derivative. Of these alternatives, the formation of the three-membered ring is kinetically favored and hence 524—526 are the products. The structural relationship between both possible product types is made clear in Scheme 6.107 by the example of the reaction between 5 and styrene. [Pg.337]

In addition to 534, further [4+2]-cycloadducts of 5 were prepared by using 1,3-dienes, some of which are well known as trapping reagents of short-lived cyclic allenes and cycloalkynes. Further, cycloadditions could be achieved with tropone and several 2-substituted tropones, 8,8-dicyanoheptafulvene, 1,3,5-cycloheptatriene and a few of its 7-substituted derivatives. The products of these reactions are represented in Scheme 6.108. [Pg.339]

Himbert and co-workers discovered the interesting intramolecular [4 + 2]-cycload-dition of allenecarboxanilides 353, which is possible even with monosubstituted benzenes (R H, Scheme 7.49) [25, 340]. During heating, partially an equilibrium between the allene 353 and the cycloadduct 354 is established. This Diels-Alder reaction can be applied to the corresponding N-(3-pyridyl) [335] or N-(l-naphthyl)... [Pg.405]

Less frequently applied are [3 + 2] and [2 + 2] cycloadditions of oxygen-substituted allenes [102-104], Battioni et al. described only a limited number of [3 + 2] cycloadditions of phenyloxy- and methoxyallene with diphenyldiazomethane (157) and the nitrile imine derived from diphenylhydrazonoyl chloride (159) (Scheme 8.40) [102], Both 1,3-dipoles exclusively attack the terminal C=C bond, furnishing cycloadducts 158 and 160. Padwa et al. reported [3 + 2] cycloadditions of methoxyallene 145 with two nitrones which afforded isoxazolidines in low yield [103]. [Pg.452]


See other pages where Allenes, cycloadducts is mentioned: [Pg.271]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.271]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.785]    [Pg.141]    [Pg.6]    [Pg.607]    [Pg.264]    [Pg.266]    [Pg.267]    [Pg.291]    [Pg.302]    [Pg.315]    [Pg.320]    [Pg.322]    [Pg.329]    [Pg.337]    [Pg.349]    [Pg.401]    [Pg.402]    [Pg.408]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



Allenes, cycloadducts general reactions

Allenes, cycloadducts isomerization

Allenes, cycloadducts stability

Cycloadducts

© 2024 chempedia.info