Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes, metal mediated reduction

Metal-mediated reductive coupling of alkenes and alkynes affords access to complicated organic structures, including carbocyclic and heterocyclic molecules, from readily available starting materials. While most of these coupling reactions were initially developed as stoichiometric processes, many selective, catalytic versions have been developed over the past decade these advancements have made reductive coupling much more attractive to synthetic chemists. [Pg.217]

The Pauson-Khand reaction gives the same product as the group 4 metal-mediated reductive coupling and carbonylation, and both reactions proceed by essentially the same mechanism formation of an alkyne-metal tt complex, insertion of an alkene, insertion of CO, and reductive elimination. Some details differ, however. When an alkyne is added to Co2(CO)g, CO evolves, and an isolable, chromatographable alkyne-Co2(CO)6 complex is obtained. This butterfly complex contains four Co(II)-C bonds, and the Co-Co bond is retained. The formation of the alky n e-C o2 (C O) 6 complex involves the formation of an ordinary tt complex of the alkyne with one Co(0) center, with displacement of CO. The tt complex can be written in its Co(II) cobaltacyclopropene resonance structure. The tt bond of the cobaltacyclopropene is then used to form a tt complex to the other Co center with displacement of another equivalent of CO. This second tt complex can also be written in its cobaltacyclopropene resonance structure. The alkyne-Co2(CO)6 complex has two 18-electron Co(II) centers. [Pg.302]

Malacria and co-workers76 were the first to report the transition metal-catalyzed intramolecular cycloisomerization of allenynes in 1996. The cobalt-mediated process was presumed to proceed via a 7r-allyl intermediate (111, Scheme 22) following C-H activation. Alkyne insertion and reductive elimination give cross-conjugated triene 112 cobalt-catalyzed olefin isomerization of the Alder-ene product is presumed to be the mechanism by which 113 is formed. While exploring the cobalt(i)-catalyzed synthesis of steroidal skeletons, Malacria and co-workers77 observed the formation of Alder-ene product 115 from cis-114 (Equation (74)) in contrast, trans-114 underwent [2 + 2 + 2]-cyclization under identical conditions to form 116 (Equation (75)). [Pg.587]

Like alkynes, a variety of mechanistic motifs are available for the transition metal-mediated etherification of alkenes. These reactions are typically initiated by the attack of an oxygen nucleophile onto an 72-metalloalkene that leads to the formation of a metal species. As described in the preceding section, the G-O bond formation event can be accompanied by a wide range of termination processes, such as fl-H elimination, carbonylation, insertion into another 7r-bond, protonolysis, or reductive elimination, thus giving rise to various ether linkages. [Pg.679]

Reduction of (312) has been found to afford the dimer (313) which upon heating rearranged to yield the unprecedented di(benzopentalene) complex (314). The regio- and stereo-specificity of the conversion (313) into (314) implies a metal-mediated pathway for the process (see Scheme 100). The first observable cis-bis(alkyne)cyclobutadiene rearrangement [see (315) to (316)] has been reported. [Pg.584]

A theoretical study of the intermediates involved in the formation of phospha-propyne from pyrolysis of vinylphosphirane has led to a new route to phospha-alkynes. Thus, pyrolysis of trimethylsilyl(l-phosphiranyl)diazomethane has yielded MeaSiC = P, via an intermediate 1-phosphiranylmethylene . Regioselec-tivity in the [3 + 2] cycloaddition reaction between phosphaethyne and diazomethane has been studied by theoretical techniques , and further examples of reactions of this type described . Cycloaddition of phospha-alkynes with silylenes has also been reported. The primary phosphine 324 has been isolated from the addition of diethylphosphite to t-butylphosphaethyne. The chemistry of phospha-alkyne cyclotetramer systems has been reviewed and the first examples of platinum(II) complexes of such cage systems described. Aspects of the reactivity of coordinated phospha-alkynes have received further study, and a remarkable metal-mediated double reduction of t-butylphosphaethyne to the complexed fluorophosphine 325 described Phosphorus-carbon-aluminium cage structures have been isolated from the reactions of kinetically stable phospha-alkynes with trialkylaluminium compounds and new phosphaborane systems have been obtained from the reactions of phospha-alkynes with polyhedral boranes . Further studies of wo-phospha-alkyne coordination chemistry have appeared . The reactivity of the ion 326 has been explored. ... [Pg.42]

Lewis acid catalyzed versions of [4 4- 2] cycloadditions are restricted to functionalized dieno-philes. Nonfunetionalized alkenes and alkynes cannot be activated with Lewis acids and in thermal [4 + 2] cycloadditions these suhstrates usually show low reactivity. It has been reported that intcrmolecular cycloaddition of unactivated alkynes to dienes can be accelerated with low-va-lent titanium, iron or rhodium catalysts via metal-mediated - -complex formation and subsequent reductive elimination39 44. Usually, however, low product selectivities are observed due to side reactions, such as aromatization, isomerization or oligomerization. More effective are nickel-catalyzed intramolecular [4 4- 2]-dienyne cycloadditions which were developed for the synthesis of polycycles containing 1.4-cyclohexadienes45. Thus, treatment of dienyne 1, derived from sorbic acid, with 10mol% of Ni(cod)2 and 30 mol % of tris(o-biphenyl) phosphite in tetrahydrofuran at room temperature affords bicyclic 1,4-dienes 2, via intramolecular [4 + 2] cycloaddition, with excellent yield and moderate to complete diastereocontrol by substituents attached to the substrate. The reaction is sensitive towards variation in the catalyst and the ligand. [Pg.470]

In many catalytic processes and transition metal mediated reactions, a-bor-ane complexes have been shown to be intermediates. The bis(borane) complex Cp2Ti( 72-HBcat/)2 (HBcaT = HBcat-4-f-Bu) is a highly active catalyst for the hydroboration of vinylarenes [37]. A mechanism, shown in Scheme 3, has been proposed for the Ti-catalyzed hydroboration on the basis of a detailed mechanistic study [37]. Theoretical calculations provided further support to the proposed reaction mechanism and showed that the reductive elimination step, giving the product molecules, is rate-determining [38]. In the Cp2Ti(CO)2 catalyzed hydroboration of alkynes [36,37], the proposed reaction mechanism (Scheme 4) also involves a a-borane complex similar to 11 and 14. In the titanium-catalyzed decaborane-olefin hydroborations [47,48], a-borane complexes were also considered as intermediates. In the Cp2MH (M = Nb, Ta) mediated hydroboration reactions of olefins [39,41], Smith and his coworkers observed several interesting cr-borane complexes, such as 21-23 discussed above. [Pg.140]

Most transition-metal-mediated alkyne cyclotrimerizations proceed via the general mechanism, which is known as the common mechanism and involves the initial formation of a metallacyclopentadiene intermediate (A) by the oxidative cychzation of two alkyne molecules on a low-valent metal center (Scheme 3.19) [69], The metallacyclopentadiene intermediate then possibly reacts with a third alkyne molecule via insertion to produce metallacycloheptatriene B, which yields the final aromatic product by subsequent reductive elimination. Alternatively, metallacyclopentadiene A undergoes [4 + 2] cycloaddition with an alkyne to produce metallanorbornadiene C [70]. [Pg.101]

As amply demonstrated by the success of the metathesis reaction [ 127], alkenes and alkynes are synthetically extraordinarily versatile functional groups for transition metal-mediated transformations. Hydrozirconation with readily available zirconocene hydrides allows the direct reductive conversion of... [Pg.21]

The inter- and intramolecular catalytic reductive couplings of alkynes and aldehydes recently have experienced rapid growth and are the topic of several recent reviews.5 h-8k 107 With respect to early transition metal catalysts, there exists a single example of the catalytic reductive cyclization of an acetylenic aldehyde, which involves the titanocene-catalyzed conversion of 77a to ethylidene cyclopentane 77b mediated by (EtO)3SiH.80 This process is restricted to terminally substituted alkyne partners (Scheme 53). [Pg.524]

Often, selectivity for a vinylidene-mediated pathway is heavily dictated by substrate structure. It is especially true in the case of hetero-atom substituted alkynes that Jt-alkyne/vinylidene rearrangement is driven by a reduction in steric interactions at the metal center. [Pg.279]

Indirect electrochemical oxidative carbonylation with a palladium catalyst converts alkynes, carbon monoxide and methanol to substituted dimethyl maleate esters (81). Indirect electrochemical oxidation of dienes can be accomplished with the palladium-hydroquinone system (82). Olefins, ketones and alkylaromatics have been oxidized electrochemically using a Ru(IV) oxidant (83, 84). Indirect electrooxidation of alkylbenzenes can be carried out with cobalt, iron, cerium or manganese ions as the mediator (85). Metalloporphyrins and metal salen complexes have been used as mediators for the oxidation of alkanes and alkenes by oxygen (86-90). Reduction of oxygen and the metalloporphyrin generates an oxoporphyrin that converts an alkene into an epoxide. [Pg.88]


See other pages where Alkynes, metal mediated reduction is mentioned: [Pg.18]    [Pg.218]    [Pg.241]    [Pg.253]    [Pg.713]    [Pg.216]    [Pg.258]    [Pg.151]    [Pg.3217]    [Pg.1351]    [Pg.272]    [Pg.3216]    [Pg.115]    [Pg.437]    [Pg.211]    [Pg.258]    [Pg.207]    [Pg.417]    [Pg.439]    [Pg.714]    [Pg.56]    [Pg.73]    [Pg.44]    [Pg.287]    [Pg.1276]    [Pg.300]    [Pg.651]    [Pg.423]    [Pg.299]    [Pg.4]    [Pg.357]    [Pg.29]   
See also in sourсe #XX -- [ Pg.1064 , Pg.1065 ]




SEARCH



Alkynes metalated

Alkynes metallation

Alkynes, metal mediated

Alkynes, metal mediated metalation

Alkynes, metal mediated reductive coupling

Metal alkynes

Metal mediated

Metalation alkynes

Reduction alkynes

© 2024 chempedia.info