Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes hydrogenation, stereochemistry

In the following section we 11 see another method for converting alkynes to alkenes The reaction conditions are very different from those of Lindlar hydrogenation So IS the stereochemistry... [Pg.375]

The stereochemistry of metal-ammonia reduction of alkynes differs from that of catalytic hydrogenation because the mechanisms of the two reactions are different The mechanism of hydrogenation of alkynes is similar to that of catalytic hydrogenation of alkenes (Sections 6 1-6 3) A mechanism for metal-ammonia reduction of alkynes is outlined m Figure 9 4... [Pg.376]

Hydrogenation of alkynes may be halted at the alkene stage by using special catalysts Lindlar palladium is the metal catalyst employed most often Hydrogenation occurs with syn stereochemistry and yields a cis alkene... [Pg.384]

Thus far, chemists have been able to influence the stereoselectivity of macro-cyclic RCM through steric and electronic substrate features or by the choice of a catalyst with appropriate activity, but there still exists a lack of prediction over the stereochemistry of macrocyclic RCM. One of the most important extensions of the original metathesis reaction for the synthesis of stereochemi-cally defined (cyclo)alkenes is alkyne metathesis, followed by selective partial hydrogenation. [Pg.359]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

Each of the syntheses of seychellene summarized in Scheme 20 illustrates one of the two important methods for generating vinyl radicals. In the more common method, the cyclization of vinyl bromide (34) provides tricycle (35).93 Because of the strength of sjp- bonds to carbon, the only generally useful precursors of vinyl radicals in this standard tin hydride approach are bromides and iodides. Most vinyl radicals invert rapidly, and therefore the stereochemistry of the radical precursor is not important. The second method, illustrated by the conversion of (36) to (37),94 generates vinyl radicals by the addition of the tin radical to an alkyne.95-98 The overall transformation is a hydrostannylation, but a radical cyclization occurs between the addition of the stannyl radical and the hydrogen transfer. Concentration may be important in these reactions because direct hydrostannylation of die alkyne can compete with cyclization. Stork has demonstrated that the reversibility of the stannyl radical addition step confers great power on this method.93 For example, in the conversion of (38) to (39), the stannyl radical probably adds reversibly to all of the multiple bond sites. However, the radicals that are produced by additions to the alkene, or to the internal carbon of the alkyne, have no favorable cyclization pathways. Thus, all the product (39) derives from addition to the terminal alkyne carbon. Even when cyclic products might be derived from addition to the alkene, followed by cyclization to the alkyne, they often are not found because 0-stannyl alkyl radicals revert to alkenes so rapidly that they do not close. [Pg.796]

A major drawback of alkene metathesis is lack of control over the stereochemistry of the newly formed double bond. For unstrained systems, E/Z ratios are virtually unpredictable. Alkyne metathesis, on the other hand, can always be combined with subsequent Lindlar hydrogenation, thereby giving access to stereochemically pure 2-olefins. In 1998, Ftirstner and Seidel were the first to report a ring-closing alkyne metathesis [7]. Under high-dilution conditions (0.02 m) and reduced pressure (20 mbar, removal of 2-butyne, solvent 1,2,4-trichlorobenzene (b.p. 214 °C)) the Schrock catalyst was applied to assemble macrocydic... [Pg.28]

The addition of water to alkynes is also aided by the presence of mercury (II) salts. The reaction is usually conducted in water, with the presence of a strong acid, such as sulfuric acid, and a mercury salt, such as HgS04 oi HgO. In this case the mercury is spontaneously replaced by hydrogen under the reaction conditions, so a second step is not necessary. The addition occurs with a Markovnikov orientation stereochemistry is not an issue. [Pg.424]

When the catalytic hydrogenation reaction is run under relatively mild conditions (room temperature and a pressure of hydrogen gas of several atmospheres or less), the reaction is very selective. Carbon-carbon double bonds of alkenes and carbon-carbon triple bonds of alkynes react readily, whereas carbon-carbon double bonds of aromatic rings and carbon-oxygen double bonds are usually inert under these reaction conditions. Some examples are provided in the following equations. Note that the stereochemistry of the addition reaction makes no difference in the first two examples. In the last example the major product results from syn addition. [Pg.445]

The catalytic hydrogenation of alkynes is similar to the hydrogenation of alkenes, and both proceed with syn stereochemistry. In catalytic hydrogenation, the face of a pi bond contacts the solid catalyst, and the catalyst weakens the pi bond, allowing two hydrogen atoms to add (Figure 9-2). This simultaneous (or nearly simultaneous) addition of two hydrogen atoms on the same face of the alkyne ensures syn stereochemistry. [Pg.406]

To form a trans alkene, two hydrogens must be added to the alkyne with anti stereochemistry. Sodium metal in liquid ammonia reduces alkynes with anti stereochemistry, so this reduction is used to convert alkynes to trans alkenes. [Pg.407]

Controlled reduction of alkynyl silanes produces the corresponding vinyl silanes and the method of reduction dictates the stereochemistry. Lindlar hydrogenation adds a molecule of hydrogen across the alkyne in a cis fashion to produce the 2-vinyl silane. Red Al reduction of a propargylic alcohol leads instead to the E-isomer. [Pg.1293]


See other pages where Alkynes hydrogenation, stereochemistry is mentioned: [Pg.189]    [Pg.452]    [Pg.181]    [Pg.138]    [Pg.262]    [Pg.1301]    [Pg.585]    [Pg.270]    [Pg.424]    [Pg.1225]    [Pg.790]    [Pg.278]    [Pg.251]    [Pg.284]    [Pg.142]    [Pg.138]    [Pg.344]    [Pg.327]    [Pg.182]    [Pg.138]    [Pg.73]    [Pg.38]    [Pg.412]    [Pg.298]    [Pg.182]    [Pg.262]   
See also in sourсe #XX -- [ Pg.1059 ]




SEARCH



Alkynes hydrogenation

Alkynes stereochemistry

Hydrogen stereochemistry

Hydrogenation stereochemistry

© 2024 chempedia.info