Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes complex with mercury

Bis(alkyl) complexes, with mercury, preparation, 2, 428 Bis(alkylidene)s, in Ru and Os half-sandwiches, 6, 583 Bis(alkylimido) complexes, with chromium(VI), 5, 346 Bis(rj2-alkyne)platinum(0) complexes, preparation, 8, 640 Bis(alkynyl) complexes in [5+2+l + l]-cycloadditions, 10, 643 with manganese, 5, 819 with mercury, preparation, 2, 426 mononuclear Ru and Os compounds, 6, 409 with platinum, 12, 125 with platinum(II), 8, 539 with titanium(IV), 4, 643 with zirconium, 4, 722... [Pg.63]

Mercury 7r-complexes with alkene and alkyne ligands 447... [Pg.419]

Generally, cyclohexyne is an unstable molecule because of its ring strain. However, it can be stabilized by coordination to transition metals.35 The reduction of 1,2-dibromocyclohexene by sodium/mercury in the presence of a nickel-bromide complex afforded the Ni-alkyne complex 66 as a thermally stable and isolable compound (Scheme 22).36 Complex 66 smoothly reacted with C02 under atmospheric pressure to give nickelacycle 67 in good yield. Dimethyl acetylenedicarboxylate was inserted into the vinyl-nickel bond in 67 to give the seven-membered oxanickelacycle 68. [Pg.546]

The reaction of Hg[Co(CO)4]2 with some terminal alkynes, RC=CH, has given mercury carbonylcobalt-alkyne complexes. Thus, the reaction of RC=CH and Hg[Co(CO)4]2 at 100°C gives complexes of stoichiometry HgCo2(CO)e(RC2H)4. The complex with R = Ph has been isolated also from the reaction of tetracyclone with Hg[Co(CO)4]2 133). The known complexes of this type are listed in Table XII. [Pg.356]

Ishikawa and coworkers have investigated rather more complex systems in which mixtures of disilylalkynes have been co-photolyzed with trisilanes using a low-pressure mercury lamp. The main reaction was one in which the silaallene (from the disilyl-alkyne) combined with the silylene (from the trisilane) to give remarkably stable solid disilacyclopropanes53 (equation 31). [Pg.975]

The phase-transfer-assisted permanganate oxidation of alkynes and alkenes has been reviewed. Terminal and internal alkynes are oxidized to 1,2-dicarbonyl compounds by the combined action of diphenyl disulphide, ammonium peroxidisulphate and water or by sodium periodate in the presence of ruthenium dioxide (equation 34). Other reagents for the conversion of acetylenes into 1,2-dicarbonyl compounds are hydrogen peroxide in the presence of (2,6-dicarboxylatopyridine)iron(II), the complex oxo(A, A -ethylenebissalicylideneiminato)chromium(V) trifluoromethanesulphonate (216)and ruthenium tetroxide as a mediator in electrooxidation. l-Acetoxyalkan-2-ones 217 are obtained by the oxidation of terminal acetylenes with sodium perborate and mercury(II) acetate in acetic acid ". Terminal alkynes give a-ketoaldehydes 218 on treatment with dilute hydrogen peroxide, combined with mercury(II) acetate and sodium molybdate or sodium tungstate under phase-transfer conditions. ... [Pg.314]

Vinyl complexes are typically prepared by the same methods used to prepare aryl complexes. Vinyl mercury compounds, like aryl mercury compoimds, are easily prepared (by the mercuration of acetylenes), and are therefore useful for the preparation of vinyl transition metal complexes by transmetallation. The use of vinyl lithium reagents has permitted the s rnthesis of homoleptic vinyl complexes by transmetallation (Equation 3.35). Reactive low-valent transition metal complexes also form vinyl complexes by the oxidative addition of vinyl halides with retention of stereochemistry about the double bond (Equation 3.36). Vinyl complexes have also been formed by the insertion of alkynes into transition metal hydride bonds (Equation 3.37), by sequential electrophilic and nucleophilic addition to alkynyl ligands (Equation 3.38), and by the addition of nucleophiles to alkyne complexes (Equation 3.39). The insertion of alkynes into transition metal alkyl complexes is presented in Chapter 9 and, when rearrangements are slower than insertion, occurs by s)m addition. In contrast, nucleophilic attack on coordinated alkynes, presented in Chapter 11, generates products from anti addition. [Pg.96]

A new type of catalyst, a cobalt carbonyl complex, has been found for low-temperature (viz. 50 °C) homogeneous hydroformylation of alkenes. Nafion-H (a superacidic perfluorinated resin sulphonic acid) impregnated with mercury is recommended as a catalyst for the hydration of alkynes R C=CR (R = H or aryl, R = H, alkyl, or aryl) to form ketones R CH2C0R. Two mild methods for the hydrolysis of vinyl halides to ketones have been described one utilizes Bp3,Et20 and mercury(ii) acetate in acetic acid and the second mercury(ii) acetate in trifluoroacetic acid/ ... [Pg.42]

Organic compounds such as terminal alkynes can undergo direct mercuration using various mercury salts. For instance, alkyne 61 has been shown to react with Hg(OAc)2 to form the symmetrical bis-alkyl-mercury complex 62 (Equation (21)).73... [Pg.428]

Setting Up Carefully add 3 mL of concentrated sulfuric acid to 20 mL of water contained in the 100-mL round-bottom flask equipped with a stirbar. Dissolve 0.2 g of reagent-grade mercuric oxide in the resulting warm solution and cool the flask to about 50 X. Attach a reflux condenser to the flask, and add 3.6 mL of 2-methyl-3-butyn-2-ol in one portion through the top of the condenser. The cloudy white precipitate that forms is presumably the mercury complex of the alkyne. [Pg.412]


See other pages where Alkynes complex with mercury is mentioned: [Pg.422]    [Pg.98]    [Pg.139]    [Pg.552]    [Pg.547]    [Pg.267]    [Pg.149]    [Pg.108]    [Pg.465]    [Pg.79]    [Pg.144]    [Pg.28]    [Pg.387]    [Pg.387]    [Pg.371]    [Pg.1089]    [Pg.142]    [Pg.407]    [Pg.192]    [Pg.318]    [Pg.615]    [Pg.486]    [Pg.166]    [Pg.171]    [Pg.218]    [Pg.3]    [Pg.236]    [Pg.65]   


SEARCH



Alkyne complexe

Alkyne complexes

Complexation with mercury

Mercury alkynes

Mercury complexes

Mercury complexing

With alkynes

© 2024 chempedia.info