Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl ketones cycloaddition reaction

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

Nitrone cycloaddition reactions with alkynes have been widely used for the synthesis of imidazolidine nitroxides (736) and (737), containing chelating enam-ino ketone groups (821). Different heterocyclic systems were obtained, such as 3-(2-oxygenated alkyl)piperazin-2-ones (738) (822), also compounds containing the isoxazolo[3,2-i]indole ring system (739) (823) and a new class of ene-hydroxylamino ketones- (l )-2-( 1-hydroxy-4,4,5,5-tetraalkylimidazolidin-2-ylidene)ethanones (740) (824) (Fig. 2.46). [Pg.374]

Elsewhere, Heaney et al. (313-315) found that alkenyloximes (e.g., 285), may react in a number of ways including formation of cyclic nitrones by the 1,3-APT reaction (Scheme 1.60). The benzodiazepinone nitrones (286) formed by the intramolecular 1,3-APT will undergo an intermolecular dipolar cycloaddition reaction with an external dipolarophile to afford five,seven,six-membered tricyclic adducts (287). Alternatively, the oximes may equilibrate to the corresponding N—H nitrones (288) and undergo intramolecular cycloaddition with the alkenyl function to afford five,six,six-membered tricyclic isoxazolidine adducts (289, R = H see also Section 1.11.2). In the presence of an electron-deficient alkene such as methyl vinyl ketone, the nitrogen of oxime 285 may be alkylated via the acyclic version of the 1,3-APT reaction and thus afford the N-alkylated nitrone 290 and the corresponding adduct 291. In more recent work, they prepared the related pyrimidodiazepine N-oxides by oxime-alkene cyclization for subsequent cycloaddition reactions (316). Related nitrones have been prepared by a number of workers by the more familiar route of condensation with alkylhydroxylamines (Scheme 1.67, Section 1.11.3). [Pg.51]

Oxamborolidenes. There are noteworthy advances in the design, synthesis, and study of amino acid-derived oxazaborolidene complexes as catalysts for the Mukaiyama aldol addition. Corey has documented the use of complex 1 prepared from A-tosyl (S)-tryptophan in enantioselective Mukaiyama aldol addition reactions [5]. The addition of aryl or alkyl methyl ketones 2a-b proceeded with aromatic as well as aliphatic aldehydes, giving adducts in 56-100% yields and up to 93% ee (Scheme 8B2.1, Table 8B2.1). The use of 1-trimethylsilyloxycyclopentene 3 as well as dienolsilane 4 has been examined. Thus, for example, the cyclopentanone adduct with benzaldehyde 5 (R = Ph) was isolated as a 94 6 mixture of diastereomers favoring the syn diastereomer, which was formed with 92% ee, Dienolate adducts 6 were isolated with up to 82% ee it is important that these were shown to afford the corresponding dihydropyrones upon treatment with trifuoroacetic acid. Thus this process not only allows access to aldol addition adducts, but also the products of hetero Diels-Alder cycloaddition reactions. [Pg.514]

Since the report by Carboni and Lindsey in 1959 on the cycloaddition reaction of tetrazines to multiple bonded molecules as a route to pyridazines, such reactions have been extensively studied. In addition to acetylenes and ethylenes, enol ethers, ketene acetals, enol esters and enamines, and even aldehydes and ketones have been used as starting materials for pyridazines. A detailed investigation of various 1,2,4, 5-tetrazines in these syntheses revealed the following facts. In [4 + 2] cycloaddition reactions of 3,6-bis(methylthio)-l,2,4,5-tetrazine with dienophiles, which lead to pyridazines, the following order of reactivity was observed (in parenthesis the reaction temperature is given) ynamines (25°C) > enamines (25-60°C) > ketene acetals (45-100°C) > enamides (80-100°C) > trimethylsilyl or alkyl enol ethers (100-140°C) > enol... [Pg.392]

Simple a,3-unsaturated aldehydes, ketones, and esters (R = C02Me H > alkyl, aryl OR equation l)i, 60 preferentially participate in LUMOdiene-controlled Diels-Alder reactions with electron-rich, strained, and selected simple alkene and alkyne dienophiles, - although the thermal reaction conditions required are relatively harsh (150-250 C) and the reactions are characterized by the competitive dimerization and polymerization of the 1-oxa-1,3-butadiene. Typical dienophiles have included enol ethers, thioenol ethers, alkynyl ethers, ketene acetals, enamines, ynamines, ketene aminals, and selected simple alkenes representative examples are detailed in Table 2. - The most extensively studied reaction in the series is the [4 + 2] cycloaddition reaction of a,3-unsaturated ketones with enol ethers and E)esimoni,... [Pg.453]

Because of their predictable behavior and reactivity, thioacyl isocyanates comprise the bulk of this work, and extensive studies of their [4 + 2] reactions with olefins,83 enamines,84 enol ethers,843 thioacyl isocyanates,85 imines,85 1 86 carbodiimides,84387 isocyanates,843 azirines,88 /3-enaminoke-tones,89 dianils,86d azines,90 hydrazones,91 imidazoline-4,5-diones,92 aryl cyanates,93 disubstituted cyanamides,93 aldehydes,94 ketones,94 ketenes,94 alkyl or aryl iminodithiocarbonates,95 and the carbon-carbon double bond of ketenimines96 have been detailed. In an extensive comparative study of the [4 + 2] cycloaddition reactions of thioacyl isocyanates, the heterocu-mulenes bearing strong electron-withdrawing substituents were found to be more stable and less prone to participate in cycloaddition reactions.84 Representative examples are summarized in Scheme 9-IV. [Pg.139]

Ketones and aldehydes can undergo photochemical [2-1-2] cycloaddition reactions with alkenes to give oxetanes. This is called the Paterno-Buchi reaction. For alkyl carbonyl compounds both singlet and triplet excited states seem to be involved, but for aromatic compounds the reaction occurs through the triplet state.The regiochemistry can usually be accounted for on the basis of formation of the most stable 2-oxa-1,4-diradical. For example, styrene and benzaldehyde give 2,3- not 2,4-diphenyloxetane. ... [Pg.1132]

In some cases, products of reactions of TADs are best explained by the existence of 1,4-dipolar intermediates, and sometimes such intermediates have been observed. Some examples of [2 + 2] cycloaddition and ene reactions have been treated with the respective Sections IV,B and IV,C. There are many other types of reactions where such intermediates have been suggested and/or proved. For example, vinylethers 304 give with PTAD mixtures of 1,2-addition and polymeric products, the formation of which can be easily explained by 1,4-dipolar intermediates 305 (72JOC1454). In the presence of alkyl ketones, e.g., acetone, PTAD reacts spontaneously with vinyl ethers via these 1,4-dipoles 305, which are able to add to weakly dipolarophilic acetone to form 306, together with a polymeric material (71JOC2838 83JOC822). A similar reaction takes place when 1-phenyl-4-vinylpyrazole (307) is treated with PTAD at -60°C in acetone (85TL6357). [Pg.161]


See other pages where Alkyl ketones cycloaddition reaction is mentioned: [Pg.270]    [Pg.258]    [Pg.114]    [Pg.165]    [Pg.201]    [Pg.761]    [Pg.591]    [Pg.167]    [Pg.253]    [Pg.1091]    [Pg.100]    [Pg.318]    [Pg.90]    [Pg.201]    [Pg.84]    [Pg.61]    [Pg.121]    [Pg.318]    [Pg.222]    [Pg.245]    [Pg.336]    [Pg.188]    [Pg.2126]    [Pg.264]    [Pg.315]    [Pg.351]    [Pg.540]    [Pg.177]   


SEARCH



Alkyl 5+2] cycloaddition

Alkylated ketone

Alkylation ketone

Alkylation reactions ketones

Cycloaddition ketones

Cycloaddition reactions alkylation

Ketones alkyl

Ketones cycloaddition reactions

Ketones cycloadditions

© 2024 chempedia.info