Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homoallylic alkenes

The 4-hydroxy-1-alkene (homoallylic alcohol) 81 is oxidized to the hetni-acetal 82 of the aldehyde by the participation of the OH group when there is a substituent at C3. In the absence of the substituent, a ketone is obtained. The hemiacetal is converted into butyrolactone 83[117], When Pd nitro complex is used as a catalyst in /-BuOH under oxygen, acetals are obtained from homoallylic alcohols even in the absence of a substituent at C-3[l 18], /-Allylamine is oxidized to the acetal 84 of the aldehyde selectively by participation of the amino group[l 19],... [Pg.33]

In a similar manner, a (5-methoxynortricyclen-3-yl)dipyridinepalladium complex was obtained via nucleophilic addition of methanol to complexed norbornadiene to form a dimeric with pyridine. An X-ray structure of the complex was determined. " ... [Pg.1870]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

The carbopalladation is extended to homoallylic amines and sulfides[466. Treatment of 4-dimethylamino-l-butene (518) with diethyl malonate and Li2PdCl4 in THF at room temperature leads to the oily carbopalladated complex 519, hydrogenation of which affords diethyl 4-(dimethylamino) butylmalonate (520) in an overall yield of 91%. Similarly, isopropyl 3-butenyl sulfide (521) is carbopalladated with methyl cyclopentanonecarboxylate and Li2PdCl4. Reduction of the complex affords the alkylated keto ester 522 in 96% yield. Thus functionalization of alkenes is possible by this method. [Pg.96]

Furthei-more, the cyclization of the iododiene 225 affords the si.x-membered product 228. In this case too, complete inversion of the alkene stereochemistry is observed. The (Z)-allylic alcohol 229 is not the product. Therefore, the cyclization cannot be explained by a simple endo mode cyclization to form 229. This cyclization is explained by a sequence of (i) e.vo-mode carbopallada-tion to form the intermediate 226, (ii) cydopropanation to form 227. and (iii) cyclopropylcarbinyl to homoallyl rearrangement to afford the (F3-allylic alcohol 228[166]. (For further examples of cydopropanation and endo versus e o cyclization. see Section 1.1.2.2.)... [Pg.161]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

The Pd-catalyzed hydrogenolysis of vinyloxiranes with formate affords homoallyl alcohols, rather than allylic alcohols regioselectively. The reaction is stereospecific and proceeds by inversion of the stereochemistry of the C—O bond[394,395]. The stereochemistry of the products is controlled by the geometry of the alkene group in vinyloxiranes. The stereoselective formation of stereoisomers of the syn hydroxy group in 630 and the ami in 632 from the ( )-epoxide 629 and the (Z)-epoxide 631 respectively is an example. [Pg.376]

Employing protocol V with the methanesulfonamide catalyst 122, a 93 7 er can be obtained in the cyclopropanation of cinnamyl alcohol. This high selectivity translates well into a number of allylic alcohols (Table 3.12) [82]. Di- and tri-substi-tuted alkenes perform well under the conditions of protocol V. However, introduction of substituents on the 2 position leads to a considerable decrease in rate and selectivity (Table 3.12, entry 5). The major failing of this method is its inability to perform selective cyclopropanations of other hydroxyl-containing molecules, most notably homoallylic alcohols. [Pg.138]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

Several examples for allylic reagents further substituted by heteroatoms are known. For example, a mixture of the l,l-dichloro-2-alkene and the l,3-dichloro-1-alkene leads to a homogeneous homoallylic alcohol17,18. [Pg.436]

The 121/Cl3SiH combination selectively cross-couples alkenes with alkynes intermolecularly to give acyclic homoallylic silanes 127 and 128 (Eq. 22) [73]. [Pg.242]

The conversion of anomerically linked enol ethers 29 into either the cis- or trans-substituted pyranyl ketones with high diastereoselectivity and yield involves a Lewis acid-promoted O —> C rearrangement (Scheme 19) <00JCS(P1)2385>. Under similar conditions, homoallylic ethers 30 ring open and the oxonium ions then recyclise to new pyran derivatives 31. Whilst the product is a mixture of alkene isomers, catalytic hydrogenation occurs with excellent diastereoselectivity (Scheme 20) <00JCS(P1)1829>. [Pg.322]

Recently, Oshima et al. developed the conversion of acid chlorides into the corresponding homoallylic alcohols catalyzed by in r(/ -prepared hydridozirconium allyl reagents (Scheme 41),147 147a The proposed mechanism suggests an initial hydride transfer from the zirconocene crotyl hydride species, in equlibrium with its Cp2Zr(l-alkene),147a to the acid chloride with subsequent allylation to afford the corresponding homoallylic alcohols. [Pg.423]

An enantioselective imino-ene reaction was developed by Lectka to provide ct-amino acid derivatives.27 Aryl alkenes (cr-methyl styrene, tetralene), aliphatic alkenes (methylene cyclohexane), and heteroatom-containing enes, all gave high yields and high ee s of the homoallylic amides (Equation (17)). The mechanism of this reaction has been proposed to proceed through a concerted pathway. This mechanism is evidenced by a large kinetic isotope effect observed in the transfer of H(D). [Pg.564]

In the case of tri-substituted alkenes, the 1,3-syn products are formed in moderate to high diastereoselectivities (Table 21.10, entries 6—12). The stereochemistry of hydrogenation of homoallylic alcohols with a trisubstituted olefin unit is governed by the stereochemistry of the homoallylic hydroxy group, the stereogenic center at the allyl position, and the geometry of the double bond (Scheme 21.4). In entries 8 to 10 of Table 21.10, the product of 1,3-syn structure is formed in more than 90% d.e. with a cationic rhodium catalyst. The stereochemistry of the products in entries 10 to 12 shows that it is the stereogenic center at the allylic position which dictates the sense of asymmetric induction... [Pg.660]

Intramolecular Heck reactions.6 Heck intramolecular coupling of alkenyl or aryl iodides substituted by 3-cycloalkenyl group is an attractive route to fused, spiro, and bridged polycyclic products. Coupling is achieved with a Pd-phosphine catalyst such as Pd[P(QH5),]4 in combination with a base, N(C2H5)3 or NaOAc. The coupling tends to produce a mixture of two isomeric alkenes, in which the newly formed bond is allylic or homoallylic to the ring juncture. [Pg.297]


See other pages where Homoallylic alkenes is mentioned: [Pg.148]    [Pg.148]    [Pg.158]    [Pg.159]    [Pg.311]    [Pg.101]    [Pg.373]    [Pg.305]    [Pg.317]    [Pg.950]    [Pg.1057]    [Pg.423]    [Pg.1052]    [Pg.1329]    [Pg.305]    [Pg.950]    [Pg.1057]    [Pg.163]    [Pg.231]    [Pg.238]    [Pg.141]    [Pg.258]    [Pg.567]    [Pg.739]    [Pg.660]    [Pg.167]    [Pg.96]    [Pg.402]    [Pg.517]    [Pg.146]    [Pg.389]   
See also in sourсe #XX -- [ Pg.451 ]




SEARCH



Homoallyl

Homoallylation

Homoallylic

© 2024 chempedia.info