Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes chloride dimer

Basic alcohol solutions have been found to be capable of reducing ir-allylpalladium complexes to the corresponding alkene (equations 90 and 91 ).278-283 In similar fashion, aqueous NaOH media has been reported to effect a disproportionation of the allylpalladium chloride dimer (equation 92).284... [Pg.604]

A typical reaction involving nickel(O) treats an allylic halide such as 3-chloro-2-methyl-l-propene with Ni(CO)4 to form 439,288 a nickel dimer analogous to the palladium chloride dimer discussed in the previous section. This complex reacts with an alkene to form a new complex (440), and subsequent reaction with a variety of electrophilic reagents removes nickel. In this example, the chlorine was converted to an acetate ligand (in 441) and reacted with methanolic carbon monoxide to give the ester (442).288... [Pg.1125]

Alternatively, a catalytic system consisting of the tetrapodal phosphine ligand Tedicyp 66 and the allylpalladium chloride dimer ([PdCl(C3H5)]2) can be used for efficient Heck vinylation reactions (Scheme 48, Table 26) [341]. The crosscoupling of 3,4-dibromothiophene 116 with various alkenes 117 gives rise to the corresponding vinylated products 118 and 119. [Pg.139]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]

Scheme 6.8 gives some examples of ketene-alkene cycloadditions. In Entry 1, dimethylketene was generated by pyrolysis of the dimer, 2,2,4,4-tetramethylcyclobutane-l,3-dione and passed into a solution of the alkene maintained at 70° C. Entries 2 and 3 involve generation of chloromethylketene by dehydrohalo-genation of a-chloropropanoyl chloride. Entry 4 involves formation of dichloroketene. Entry 5 is an intramolecular addition, with the ketene being generated from a 2-pyridyl ester. Entries 6, 7, and 8 are other examples of intramolecular ketene additions. [Pg.542]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

With propene, n-butene, and n-pentene, the alkanes formed are propane, n-butane, and n-pentane (plus isopentane), respectively. The production of considerable amounts of light -alkanes is a disadvantage of this reaction route. Furthermore, the yield of the desired alkylate is reduced relative to isobutane and alkene consumption (8). For example, propene alkylation with HF can give more than 15 vol% yield of propane (21). Aluminum chloride-ether complexes also catalyze self-alkylation. However, when acidity is moderated with metal chlorides, the self-alkylation activity is drastically reduced. Intuitively, the formation of isobutylene via proton transfer from an isobutyl cation should be more pronounced at a weaker acidity, but the opposite has been found (92). Other properties besides acidity may contribute to the self-alkylation activity. Earlier publications concerned with zeolites claimed this mechanism to be a source of hydrogen for saturating cracking products or dimerization products (69,93). However, as shown in reaction (10), only the feed alkene will be saturated, and dehydrogenation does not take place. [Pg.272]

It is reasonable to assume that the identical complex will be generated whether it be done stoichiometrically from an alkene, to give a chloride or carboxylate dimer followed by the addition of 2 equiv. of a phosphine per Pd, or by the addition of an allyl-X compound to give a phosphine-Pd0 complex. This assumption is supported by the fact that complexes generated in either manner have been found to exhibit identical reaction profiles.380 Furthermore, for the vast majority of allylpalladium reactions studied, it is most likely that the reactive species is a cationic bisphosphine-palladium complex (13).13 Calculations... [Pg.614]

The cyclopropanation of alkenes, alkynes, and aromatic compounds by carbenoids generated in the metal-catalyzed decomposition of diazo ketones has found widespread use as a method for carbon-carbon bond construction for many years, and intramolecular applications of these reactions have provided a useful cyclization strategy. Historically, copper metal, cuprous chloride, cupric sulfate, and other copper salts were used most commonly as catalysts for such reactions however, the superior catalytic activity of rhodium(ll) acetate dimer has recently become well-established.3 This commercially available rhodium salt exhibits high catalytic activity for the decomposition of diazo ketones even at very low catalyst substrate ratios (< 1%) and is less capricious than the old copper catalysts. We recommend the use of rhodium(ll) acetate dimer in preference to copper catalysts in all diazo ketone decomposition reactions. The present synthesis describes a typical cyclization procedure. [Pg.184]

Transfer of carbene 3a from 19 to a variety of alkenes and cycloalkenes has been achieved under catalysis by copper(I) chloride74,79 - 82. However, with the exception of cyclohexene69,70 (72% yield), only moderate yields could be obtained. In all cases, the cyclopropanation was stereospecific with respect to the double bond configuration of the alkene and gave the sterically less crowded cyclopropane diastereomer in excess. As in the photochemical cyclopropanation, the formal carbene dimer trans-1,2-bis(trimethylsilyl)ethene is often formed as the major by-product. Cyclopropanation of fraws-but-2-ene with 19 with copper(II) chloride as catalyst was found to be even less... [Pg.741]

When an alkene molecule loses an electron, a cation radical is formed. The very reactive cation radical (CH3)2C—CHJ is generated from 2-methyl-propene in light in the presence of TiCl4. It can be detected by ESR in the frozen parent compound at 123 K [172], We assume that at higher temperatures these formations are dimerized to dications. The existence of a donor-acceptor complex is a necessary condition for the mechanism generating cation radicals (see Chap. 3, Sect. 5). a-Methylstyrene is cationically polymerized when illuminated in the presence of tetracyanobenzene in methylene chloride. From the two compounds, of which a-methylstyrene is the donor (D) and tetracyanobenzene the acceptor (A), the donor-acceptor complex is generated in the singlet and triplet states it dissociates to solvated ion radicals [173]... [Pg.202]


See other pages where Alkenes chloride dimer is mentioned: [Pg.162]    [Pg.588]    [Pg.171]    [Pg.158]    [Pg.675]    [Pg.675]    [Pg.285]    [Pg.958]    [Pg.667]    [Pg.316]    [Pg.958]    [Pg.958]    [Pg.55]    [Pg.399]    [Pg.158]    [Pg.79]    [Pg.50]    [Pg.659]    [Pg.182]    [Pg.285]    [Pg.273]    [Pg.302]    [Pg.222]    [Pg.337]    [Pg.456]    [Pg.237]    [Pg.626]    [Pg.782]    [Pg.237]    [Pg.85]    [Pg.191]    [Pg.68]    [Pg.106]    [Pg.182]   
See also in sourсe #XX -- [ Pg.521 ]




SEARCH



Alkenes dimerization

Alkenes dimerizations

Chlorides alkenes

Dimeric alkenes

© 2024 chempedia.info