Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes carbonyl oxide epoxidation

The carbonyl complex [Ru(EDTAH)(CO)] has been reported to be a very good catalyst for reactions like hydroformylation of alkenes, carbonylation of ammonia and ammines as well as a very active catalyst for the water gas shift reaction. The nitrosyl [Ru(EDTA)(NO)] is an oxygen-transfer agent for the oxidation of hex-l-ene to hexan-2-one, and cyclohexane to the corresponding epoxide. [Pg.50]

Epoxidation of alkenes with carbonyl oxides and dioxiranes. 35... [Pg.1]

The trisubstituted alkene of 10 was more readily oxidized than was the congested tetrasubstituted alkene, so the more reactive alkene was temporarily epoxidized. After ozonolysis, the epoxide was reduced off using the Sharpless protocol. It is a tribute to the specificity of this reagent that the easily-reduced a-acetoxy ketone is not affected. Selective silylation of the more accessible ketone followed by melhylenation, hydrolysis and addition of methyl lithium to the outside face of the previously protected carbonyl then delivered 1. [Pg.156]

Oxidations. The reagent 1 oxidizes primary and secondary alcohols to carbonyl compounds in fair to good yield. It is not useful for epoxidation of simple alkenes, but it epoxidizes allylic alcohols to form a,/ -epoxy alcohols in 60-70% yield, In general, this epoxidation is more stcreospccific than that observed with r-butyl hydroperoxide in combination with Mo(CO)6 (9, 81-82). [Pg.293]

NR = nonreactive toward hydrocarbons PO = oxidation of phosphines to phosphine oxides MF — peroxometallacyclic adduct formation with cyanoalkenes NSE — nonstereoselective epoxidation SE=stereoselective epoxidation AE = asymmetric epoxidation HA- hydroxylation of alkanes HB=hydroxylation of arenes OA = oxidation of alcohols to carbonyl compounds K = ketonization of Lermina 1 alkenes SO oxidation of S02 to coordinated S04 MO = metallaozonide formation with carbonyl compounds I = oxidation of isocyanides to isocyanates. [Pg.329]

In ketone-directed peroxy acid epoxidations of cyclic alkenes the actual epoxidizing agent has been shown by 180-labeling not to involve a dioxirane <94TL6155>. Instead, an a-hydroxy-benzoylperoxide or a carbonyl oxide is believed to be responsible for observed stereoselectivities in the intramolecular epoxidations. The extent of syn-selectivity is greater for ketones than with esters the syn/anti ratios increase when ether is used as solvent rather than CH2C12, the reverse situation for hydroxyl-directed epoxidations. Fused-ring oxiranes can also be prepared from acyclic precursors. Four different approaches are discussed below. [Pg.164]

Indirect electrochemical oxidative carbonylation with a palladium catalyst converts alkynes, carbon monoxide and methanol to substituted dimethyl maleate esters (81). Indirect electrochemical oxidation of dienes can be accomplished with the palladium-hydroquinone system (82). Olefins, ketones and alkylaromatics have been oxidized electrochemically using a Ru(IV) oxidant (83, 84). Indirect electrooxidation of alkylbenzenes can be carried out with cobalt, iron, cerium or manganese ions as the mediator (85). Metalloporphyrins and metal salen complexes have been used as mediators for the oxidation of alkanes and alkenes by oxygen (86-90). Reduction of oxygen and the metalloporphyrin generates an oxoporphyrin that converts an alkene into an epoxide. [Pg.88]

More general application of PTC was found in oxidation of organic compounds with H2O2 and additional catalysts, oxygen derivatives ofV, W, Mo, etc. In such systems alkenes are oxidized to epoxides, alcohols to carbonyl compounds, etc. This method assures high selectivities and yields of products, operational simplicity, etc. Being simultaneously environment firiendly, it fulfills all requirements for modern industrial processes (eqs. 174-177). [Pg.1863]

Ans Ethylene a-alkenes (oligomerization), acetaldehyde (oxidation) propylene n-butyraldehyde (hydroformylation), propylene oxide (epoxidation) CO acetic acid, acetic anhydride (carbonylation). [Pg.19]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Electron deficient carbon-carbon double bonds are resistant to attack by the electrophilic reagents of Section 5.05.4.2.2(t), and are usually converted to oxiranes by nucleophilic oxidants. The most widely used of these is the hydroperoxide ion (Scheme 79). Since epoxidation by hydroperoxide ion proceeds through an intermediate ct-carbonyl anion, the reaction of acyclic alkenes is not necessarily stereospecific (Scheme 80) (unlike the case of epoxidation with electrophilic agents (Section 5.05.4.2.2(f)) the stereochemical aspects of this and other epoxidations are reviewed at length in (B-73MI50500)). [Pg.117]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into lTans-l,2-diols by acid-catalyzed epoxide hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with 0s04. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. [Pg.246]

Binaphthol- and biphenyl-derived ketones (9 and 10) were reported by Song and coworkers in 1997 to epoxidize unfunctionalized alkenes in up to 59% ee (Fig. 3, Table 1, entries 9, 10) [37, 38]. Ketones 9 and 10 were intended to have a rigid conformation and a stereogenic center close to the reacting carbonyl group. The reactivity of ketones 9 and 10 is lower than that of 8, presumably due to the weaker electron-withdrawing ability of the ether compared to the ester. In the same year, Adam and coworkers reported ketones 11 and 12 to be epoxidation catalysts for several trans- and trisubstituted alkenes (Table 1, entries 11,12). Up to 81% ee was obtained for phenylstilbene oxide (Table 1, entry 25) [39]. [Pg.203]

Silylformylation, defined as the addition of RsSi- and -CHO across various types of bonds using a silane R3SiH, CO, and a transition metal catalyst, was discovered by Murai and co-workers, who developed the Co2(CO)8-catalyzed silylformylation of aldehydes, epoxides, and cyclic ethers [26]. More recently, as described in detail in Section 5.3.1, below, alkynes and alkenes have been successfully developed as silylformylation substrates. These reactions represent a powerful variation on hydroformylation, in that a C-Si bond is produced instead of a C-H bond. Given that C-Si groups are subject to, among other reactions, oxidation to C-OH groups, silylformylation could represent an oxidative carbonylation of the type described in Scheme 5.1. [Pg.103]


See other pages where Alkenes carbonyl oxide epoxidation is mentioned: [Pg.606]    [Pg.32]    [Pg.35]    [Pg.1458]    [Pg.32]    [Pg.35]    [Pg.36]    [Pg.892]    [Pg.432]    [Pg.453]    [Pg.454]    [Pg.892]    [Pg.191]    [Pg.72]    [Pg.824]    [Pg.340]    [Pg.36]    [Pg.345]    [Pg.256]    [Pg.233]    [Pg.105]    [Pg.1095]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 ]




SEARCH



Alkene epoxidations

Alkene oxidation epoxidations

Alkenes carbonylation

Alkenes epoxidation

Alkenes oxidant

Alkenes oxidative carbonylation

Alkenes, oxidative

Carbonyl oxidation

Carbonyl oxide

Carbonylation oxide

Epoxidation oxidant

Epoxide carbonylation

Epoxide oxidation

Epoxides alkene epoxidation

Epoxides carbonylation

Epoxides oxidation

Oxidation alkene epoxidation

Oxidation carbonylative

Oxidation oxidative carbonylation

Oxidative carbonylation

Oxidative carbonylations

© 2024 chempedia.info