Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, anti-Markovnikov

The great application of boranes in organic synthesis is the regio- and stereoselective hydroboration cis addition) of terminal alkenes (anti-Markovnikov) that is selective when the R groups are large enough. Boranes currently used are disiamyl-borane and 9-BBN. - ... [Pg.322]

Conversion of alkenes to alcohols by hydroboration is a synthetically-valuable reaction as it leads to the anti-Markovnikov product. [Pg.112]

Electrophilic addition of hydrogen bromide to alkenes follows Markovnikov s rule, leading to the product with halogen on the more-substituted position. However, trace amounts of hydroperoxides (among other impurities ) may initiate a reaction that gives rise to the anti-Markovnikov product, with bromine in the less-substituted position. [Pg.241]

Se-phenyl areneselenosulfonates (24) undergo facile free-radical addition to alkenes to produce / -phenylseleno sulfones (25) in excellent yield86,87 (see Scheme 7). The addition occurs regiospecifically and affords anti-Markovnikov products contrary to the analogous boron trifluoride catalyzed reaction which produces exclusively Markovnikov and highly stereospecific products86 (equation 37). Reaction 36 has been shown to have the radical... [Pg.1107]

The addition of (TMS)3SiH to a number of monosubstituted acetylenes has also been studied in some detail. These reactions are highly regioselective (anti-Markovnikov) and give terminal (TMSlsSi-substituted alkenes in good yields. High cis or trans stereoselectivity is also observed, depending on the nature of the substituents at the acetylenic moiety. For example, the reaction of the alkynes 23 and 24 with (TMSlsSiH, initiated either by EtsB at room temperature (method or by thermal decomposition of di-ferf-butyl peroxide at 160 °C... [Pg.131]

STEREOSELECTIVE AND ANTI-MARKOVNIKOV BEHAVIOUR OF NON-CONJUGATED ALKENES... [Pg.104]

As regards the regioselectivity of monosubstituted, cis and trans disubstituted alkenes, bromination most frequently exhibits anti-Markovnikov behaviour. Only in the case of propene and 1-butene, i.e. when the double bond bears only one linear substituent, bromination in methanol is predominantly but not completely Markovnikov. Steric effects obviously play an important role in determining the... [Pg.107]

Organoboranes react with a mixture of aqueous NH3 and NaOCl to produce primary amines. It is likely that the actual reagent is chloramine NH2CI. Chloramine itself,hydroxylamine-O-sulfonic acid in diglyme, and trimethyl-silyl azide " also give the reaction. Since the boranes can be prepared by the hydroboration of alkenes (15-16), this is an indirect method for the addition of NH3 to a double bond with anti-Markovnikov orientation. Secondary amines can be prepared by the treatment of alkyl- or aryldichloroboranes or dialkylchlorobor-anes with alkyl or aryl azides. [Pg.800]

Thus the observed orientation in both kinds of HBr addition (Markovnikov electrophilic and anti-Markovnikov free radical) is caused by formation of the secondary intermediate. In the electrophilic case, it forms because it is more stable than the primary in the free-radical case because it is sterically preferred. The stability order of the free-radical intermediates is also usually in the same direction 3°>2°>1° (p. 241), but this factor is apparently less important than the steric factor. Internal alkenes with no groups present to stabilize the radical usually give an approximately 1 1 mixture. [Pg.985]

The addition of hydrogen halides to simple alkenes, in the absence of peroxides, takes place by an electrophilic mechanism, and the orientation is in accord with Markovnikov s rule. " When peroxides are added, the addition of HBr occurs by a free-radical mechanism and the orientation is anti-Markovnikov (p. 985). It must be emphasized that this is true only for HBr. Free-radical addition of HF and HI has never been observed, even in the presence of peroxides, and of HCl only rarely. In the rare cases where free-radieal addition of HCl was noted, the orientation was still Markovnikov, presumably beeause the more stable product was formed. Free-radical addition of HF, HI, and HCl is energetically unfavorable (see the discussions on pp. 900, 910). It has often been found that anti-Markovnikov addition of HBr takes place even when peroxides have not been added. This happens because the substrate alkenes absorb oxygen from the air, forming small amounts of peroxides... [Pg.991]

EXERCISE 11.1 Draw the product that you would expect from an anti-Markovnikov addition of H and Br across the following alkene ... [Pg.246]

Answer In order to determine whether or not to use peroxides, we must decide whether the desired transformation represents a Markovnikov addition or an anti-Markovnikov addition. When we compare the starting alkene above with the desired product, we see that we need to place the Br at the more substituted carbon (i.e., Markovnikov addition). Therefore, we need an ionic pathway to predominate, and we should not use peroxides. We just use HBr ... [Pg.270]

A quick glance at the products indicates that we are adding H and OH across the alkene. Let s take a closer look and carefully analyze the regiochemistry and stereochemistry of this reaction. The OH is ending up on the less substituted carbon, and therefore, the regiochemistry represents an anti-Markovnikov addition. But what about the stereochemistry Are we seeing a syn addition here, or is this anti addition ... [Pg.275]

Answer (a) These reagents will accomplish an anti-Markovnikov addition of OH and H. The stereochemical outcome will be a syn addition. But we must first decide whether stereochemistry will even be a relevant factor in how we draw our products. To do that, remember that we must ask if we are creating two new stereocenters in this reaction. In this example, we are creating two new stereocenters. So, stereochemistry is relevant. With two stereocenters, there theoretically could be four possible products, but we will only get two of them we will only get the pair of enantiomers that come from a syn addition, hi order to get it right, let s redraw the alkene (as we have done many times earlier), and add OH and H like this ... [Pg.278]

Although zirconium bisamides Cp2Zr(NHAr)2 do not catalyze the hydroamination of alkenes (see above), they are catalyst precursors for the hydroamination of the more reactive double bond of allenes to give the anti-Markovnikov addition product (Eq. 4.96) [126]. [Pg.130]

The addition of hydrogen halide to alkene is another classical electrophilic addition of alkene. Although normally such reactions are carried out under anhydrous conditions, occasionally aqueous conditions have been used.25 However, some difference in regioselectivity (Markovnikov and anti-Markovnikov addition) was observed. The addition product formed in an organic solvent with dry HBr gives exclusively the 1-Br derivative whereas with aq. HBr, 2-Br derivative is formed. The difference in the products formed by the two methods is believed to be due primarily to the difference in the solvents and not to the presence of any peroxide in the olefin.26... [Pg.47]

When alkenes are treated with HBr in the presence of peroxides (i.e., compounds with the general formula ROOR) the addition occurs in an anti-Markovnikov manner in the sense that the hydrogen atom becomes attached to the carbon atom with fewer hydrogen atoms. [Pg.327]

Redical Addition to Alkenes the Anti-Markovnikov Addition of Hydrogen Bromide... [Pg.390]

Kharasch and Mayo (of the University of Chicago) found that when alkenes that contained peroxides or hydroperoxides reacted with HBr => anti-Markovnikov... [Pg.390]

A Summary of Markovnikov versus Anti-Markovnikov Addition of HBr to Alkenes... [Pg.391]

Hydroboration-oxidation gives anti-Markovnikov but syn addition of H-and -OH to an alkene. [Pg.411]

Similar to the addition of secondary phosphine-borane complexes to alkynes described in Scheme 6.137, the same hydrophosphination agents can also be added to alkenes under broadly similar reaction conditions, leading to alkylarylphosphines (Scheme 6.138) [274], Again, the expected anti-Markovnikov addition products were obtained exclusively. In some cases, the additions also proceeded at room temperature, but required much longer reaction times (2 days). Treatment of the phosphine-borane complexes with a chiral alkene such as (-)-/ -pinene led to chiral cyclohexene derivatives through a radical-initiated ring-opening mechanism. In related work, Ackerman and coworkers described microwave-assisted Lewis acid-mediated inter-molecular hydroamination reactions of norbornene [275]. [Pg.198]

The most fundamental reaction is the alkylation of benzene with ethene.38,38a-38c Arylation of inactivated alkenes with inactivated arenes proceeds with the aid of a binuclear Ir(m) catalyst, [Ir(/x-acac-0,0,C3)(acac-0,0)(acac-C3)]2, to afford anti-Markovnikov hydroarylation products (Equation (33)). The iridium-catalyzed reaction of benzene with ethene at 180 °G for 3 h gives ethylbenzene (TN = 455, TOF = 0.0421 s 1). The reaction of benzene with propene leads to the formation of /z-propylbenzene and isopropylbenzene in 61% and 39% selectivities (TN = 13, TOF = 0.0110s-1). The catalytic reaction of the dinuclear Ir complex is shown to proceed via the formation of a mononuclear bis-acac-0,0 phenyl-Ir(m) species.388 The interesting aspect is the lack of /3-hydride elimination from the aryliridium intermediates giving the olefinic products. The reaction of substituted arenes with olefins provides a mixture of regioisomers. For example, the reaction of toluene with ethene affords m- and />-isomers in 63% and 37% selectivity, respectively. [Pg.220]

The uncatalyzed hydroboration-oxidation of an alkene usually affords the //-Markovnikov product while the catalyzed version can be induced to produce either Markovnikov or /z/z-Markovnikov products. The regioselectivity obtained with a catalyst has been shown to depend on the ligands attached to the metal and also on the steric and electronic properties of the reacting alkene.69 In the case of monosubstituted alkenes (except for vinylarenes), the anti-Markovnikov alcohol is obtained as the major product in either the presence or absence of a metal catalyst. However, the difference is that the metal-catalyzed reaction with catecholborane proceeds to completion within minutes at room temperature, while extended heating at 90 °C is required for the uncatalyzed transformation.60 It should be noted that there is a reversal of regioselectivity from Markovnikov B-H addition in unfunctionalized terminal olefins to the anti-Markovnikov manner in monosubstituted perfluoroalkenes, both in the achiral and chiral versions.70,71... [Pg.843]


See other pages where Alkenes, anti-Markovnikov is mentioned: [Pg.450]    [Pg.362]    [Pg.450]    [Pg.362]    [Pg.1286]    [Pg.1286]    [Pg.108]    [Pg.111]    [Pg.985]    [Pg.994]    [Pg.998]    [Pg.1014]    [Pg.1014]    [Pg.1038]    [Pg.1039]    [Pg.1039]    [Pg.271]    [Pg.97]    [Pg.379]    [Pg.309]    [Pg.276]   


SEARCH



Alcohols from Alkenes through Hydroboration-Oxidation Anti-Markovnikov Syn Hydration

Alkenes Markovnikov

Alkenes anti-Markovnikov addition

Anti-Markovnikov addition alkene amination

Anti-Markovnikov addition of HBr to alkenes

Anti-Markovnikov addition to alkenes

Anti-Markovnikov products from alkenes

Hydrogen bromide, anti-Markovnikov addition alkenes

Markovnikov, anti

Radicals, anti-Markovnikov alkenes

© 2024 chempedia.info