Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes allyl alcohols

Alkenyllithiums generated from trisylhydrazones react with electrophiles such as primary alkyl bromides, aldehydes, ketones, dimethylformamide, CO2, chloro-trimethylsilane, or 1,2-dibromoethane to furnish substituted alkenes, allylic alcohols, a,(3-unsaturated aldehydes, a,P-unsaturated acids, alkenylsilanes, or alkenyl bromides, respectively, as exemplified below for the preparation of an allylic alcohol and an a,P-unsaturated aldehyde. ... [Pg.389]

THA4(Cr0)PWu039 THA,5(Cr0)SiW11039 Alkene Alkene Allylic alcohol Triphenylphosphine Epoxide, allylic alcohol, allylic ketone Epoxide, allylic alcohol, allylic ketone Allylic ketone Triphenylphosphine oxide MeCN or C6H6 MeCN or C6H6 MeCN c6h6 ... [Pg.718]

Into Alkenes, Allyl Alcohols, and a,P-Unsaturated Ketones (Decyanation Reaction)... [Pg.15]

New fatty compounds have been synthesized in high yields using radical addition reactions. Alkyl 2-haloalkanoates have been added to the double bond of unsaturated fatty compounds to give y-lactones. 2-Haloalkanenitriles have been added as well to give 4- haloalkanenitriles. 2-Halo fatty compounds, e.g., methyl 2-bromopalmitate, have been added to alkenes, allyl alcohol, vinyl esters, and trimethylsilyl enol ethers to give interesting branched and functionalized compounds. Key features of the re-... [Pg.97]

Arenecarboxylic acids Aryl iodides, triflates Aryl bromides Alkenyl- and allylsilanes Cyclic alkenes Allyl alcohols... [Pg.549]

Heteroatom Wittig chemistry also includes reactions of N-sulfonyl imines. It was demostrated that these compounds underwent olefination reactions with nonstabilized phosphonium ylides under mild conditions to afford an array of both Z- and E-isomers of 1,2-disubstituted alkenes, allylic alcohols, and allylic amines.Additionally, studies of the reactions of 5-bromo-4,6-dimethyl-2-thioxo-l,2-dihydropyridine-3-carboni-trile and thiazolidinone with phosphorus ylides have proved the formation of new phosphonium ylides. Annulations via P-ylides are a common occurrence in the literature. For example, on photochemical irradiation, phosphonium-iodonium ylides were shown to undergo 1,3-dipolar cycloaddition reactions with triple bonds, via a carbene intermediate, to yield furans. " Even more common are the reactions of Morita-Baylis-Hillman (MBH) acetates and carbonates. Zhou et al. demostrated that these substrates were able to generate very reactive 1,3-dipoles in the presence of tertiary phosphines the dipoles then underwent cycloaddition reactions to yield annulation products (Scheme 16). ... [Pg.104]

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

When allylic alcohols are used as an alkene component in the reaction with aryl halides, elimination of /3-hydrogen takes place from the oxygen-bearing carbon, and aldehydes or ketones are obtained, rather than y-arylated allylic alcohoIs[87,88]. The reaction of allyl alcohol with bromobenzene affords dihydrocinnamaldehyde. The reaction of methallyl alcohol (96) with aryl halides is a good synthetic method for dihydro-2-methylcinnamaldehyde (97). [Pg.142]

Furthei-more, the cyclization of the iododiene 225 affords the si.x-membered product 228. In this case too, complete inversion of the alkene stereochemistry is observed. The (Z)-allylic alcohol 229 is not the product. Therefore, the cyclization cannot be explained by a simple endo mode cyclization to form 229. This cyclization is explained by a sequence of (i) e.vo-mode carbopallada-tion to form the intermediate 226, (ii) cydopropanation to form 227. and (iii) cyclopropylcarbinyl to homoallyl rearrangement to afford the (F3-allylic alcohol 228[166]. (For further examples of cydopropanation and endo versus e o cyclization. see Section 1.1.2.2.)... [Pg.161]

As a further application of the reaction, the conversion of an endocyclic double bond to an c.xo-methylene is possible[382]. The epoxidation of an cWo-alkene followed by diethylaluminum amide-mediated isomerization affords the allylic alcohol 583 with an exo double bond[383]. The hydroxy group is eliminated selectively by Pd-catalyzed hydrogenolysis after converting it into allylic formate, yielding the c.ro-methylene compound 584. The conversion of carvone (585) into l,3-disiloxy-4-methylenecyclohexane (586) is an example[382]. [Pg.369]

The Pd-catalyzed hydrogenolysis of vinyloxiranes with formate affords homoallyl alcohols, rather than allylic alcohols regioselectively. The reaction is stereospecific and proceeds by inversion of the stereochemistry of the C—O bond[394,395]. The stereochemistry of the products is controlled by the geometry of the alkene group in vinyloxiranes. The stereoselective formation of stereoisomers of the syn hydroxy group in 630 and the ami in 632 from the ( )-epoxide 629 and the (Z)-epoxide 631 respectively is an example. [Pg.376]

The l,5-hexadien-3-ol derivatives 792 and 794 are cycli2ed to form the cyclo-pentadiene derivatives 793 and 795 by insertion of an alkene into -allylpalla-dium formed from allylic alcohols in the presence of trifluoroacetic acid (lO mol%) in AcOH[490],... [Pg.399]

The cyclohexadiene derivative 130 was obtained by the co-cyclization of DMAD with strained alkenes such as norbornene catalyzed by 75[63], However, the linear 2 1 adduct 131 of an alkene and DMAD was obtained selectively using bis(maleic anhydride)(norbornene)palladium (124)[64] as a cat-alyst[65], A similar reaction of allyl alcohol with DMAD is catalyzed by the catalyst 123 to give the linear adducts 132 and 133[66], Reaction of a vinyl ether with DMAD gives the cyclopentene derivatives 134 and 135 as 2 I adducts, and a cyclooctadiene derivative, although the selectivity is not high[67]. [Pg.487]

Mixtures of anhydrous hydrogen fluoride and tetrahydrofuran are successfully used as fluorinating agents to convert 1,1,2-trifluoro-l-allcen-3-ols, easily prepared from bromotrifluoroethene via lithiation followed by the reaction with aldehydes or ketones, to 1,1,1,2-tetrafluoro-2-alkenes The yields are optimal with a 5 1 ratio of hydrogen fluoride to tetrahydrofuran The fluorination reaction involves a fluonde lon-induced rearrangement (Sf,j2 mechanism) of allylic alcohols [65] (equation 40)... [Pg.216]

Employing protocol V with the methanesulfonamide catalyst 122, a 93 7 er can be obtained in the cyclopropanation of cinnamyl alcohol. This high selectivity translates well into a number of allylic alcohols (Table 3.12) [82]. Di- and tri-substi-tuted alkenes perform well under the conditions of protocol V. However, introduction of substituents on the 2 position leads to a considerable decrease in rate and selectivity (Table 3.12, entry 5). The major failing of this method is its inability to perform selective cyclopropanations of other hydroxyl-containing molecules, most notably homoallylic alcohols. [Pg.138]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

The reaction is limited to allylic alcohols other types of alkenes do not or not efficiently enough bind to the titanium. The catalytically active chiral species can be regenerated by reaction with excess allylic alcohol and oxidant however the titanium reagent is often employed in equimolar amount. [Pg.256]

Stereoselective preparation of CEi-allyl alcohols via radical elimination from ruin -y-phenylthio-fi-nkro alcohols has been reported. The requisiteruin -fi-nitro sulfides are prepared by protonadon of nitronates at low temperanire Isee Chapter 4, and subsequent treatment v/ith Bu-vSnH induces and eliminadon to givelE -alkenes selecdvely IseeEq. 7.112. Unfortunately, it is difficult to get the pure syu-fi-nitro sulfides. Treatment of a rruxnire of syu- and ruin -fi-nitrosulfides v/ith Bu- SnH results in formadon of a rruxnire of (Ey and lZ -alkenes. [Pg.217]

The oxidation of alkenes and allylic alcohols with the urea-EL202 adduct (UELP) as oxidant and methyltrioxorhenium (MTO) dissolved in [EMIM][BF4] as catalyst was described by Abu-Omar et al. [61]. Both MTO and UHP dissolved completely in the ionic liquid. Conversions were found to depend on the reactivity of the olefin and the solubility of the olefinic substrate in the reactive layer. In general, the reaction rates of the epoxidation reaction were found to be comparable to those obtained in classical solvents. [Pg.233]


See other pages where Alkenes allyl alcohols is mentioned: [Pg.116]    [Pg.345]    [Pg.190]    [Pg.42]    [Pg.958]    [Pg.2184]    [Pg.697]    [Pg.190]    [Pg.320]    [Pg.137]    [Pg.145]    [Pg.116]    [Pg.345]    [Pg.190]    [Pg.42]    [Pg.958]    [Pg.2184]    [Pg.697]    [Pg.190]    [Pg.320]    [Pg.137]    [Pg.145]    [Pg.33]    [Pg.137]    [Pg.263]    [Pg.337]    [Pg.404]    [Pg.116]    [Pg.120]    [Pg.194]    [Pg.199]    [Pg.434]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 , Pg.184 ]




SEARCH



Alkene alcohols

Alkenes allylic

© 2024 chempedia.info