Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction with indole

The pyridoxal/pyridoxamine system is not only involved in transaminations. We examined catalysts for the synthesis of tryptophan by coupling reactions with indole and for pyridoxal-catalyzed aldol condensations.We also examined optical induction in... [Pg.14]

Abstract Aldehydes obtained from olefins under hydroformylation conditions can be converted to more complex reaction products in one-pot reaction sequences. These involve heterofunctionalization of aldehydes to form acetals, aminals, imines and enamines, including reduction products of the latter in an overall hydroaminomethylation. Furthermore, numerous conversions of oxo aldehydes with additional C.C-bond formation are conceivable such as aldol reactions, allylations, carbonyl olefinations, ene reactions and electrophilic aromatic substitutions, including Fischer indole syntheses. [Pg.74]

Wang et al. investigated the catalytic behavior of cation exchange resin supported lanthanide(III) salts of the general structure (31) (Scheme 4.15), prepared from Dowex, Amberlite, Amberlyst and other resins [99]. It turned out that Am-berlyst XN-1010 and Amberlyst 15 complexed best with lanthanides(III). Thus, among others, electrophilic substitution of indole with hexanal and Mukayiama-type aldol reaction of benzaldehyde with ketene silyl acetal proceeded in excellent yields under catalytic conditions (Scheme 4.16). [Pg.220]

MECHANISM FIGURE 22-18 Tryptophan synthase reaction. This enzyme catalyzes a multistep reaction with several types of chemical rearrangements. An aldol cleavage produces indole and glyceraldehyde 3-phosphate this reaction does not require PLP. Dehydration of serine forms a PLP-aminoacrylate intermediate. In steps and this condenses with indole, and the product is hydrolyzed to release tryptophan. These PLP-facilitated transformations occur at the /3 carbon (C-3) of the amino acid, as opposed to the a-carbon reactions described in Figure 18-6. The /3 carbon of serine is attached to the indole ring system. Tryptophan Synthase Mechanism... [Pg.850]

In a sequence of complex reactions, which will not be considered in detail, the indole ring system is formed by incorporating two carbons from phosphoribosyl diphosphate, with loss of the original anthranilate carboxyl. The remaining ribosyl carbons are then removed by a reverse aldol reaction, to be replaced on a bound form of indole by those from L-serine, which then becomes the... [Pg.127]

Condensation of A pyrroline with pyrrole readily affords a stable compound, 2-(2-pyrrolidyl)pyrrole.97 The pyrrole trimer345> 848 and indole dimer347 are formed by analogous aldol reactions. The dimerizations of some derivatives and analogs of J1-pyrroline and Zl -piperideine, e.g. J1-pyrroline-2-carboxylic acid and 4-thia-J1-piperideine-2-carboxylic acid, take a similar course.348... [Pg.219]

It catalyses the aminolysis of epoxides in an extraordinarily efficient manner in aprotic solvents (e.g. toluene, CH2CI2) with complete trans stereoselectivity and high regioselectivity [Chini et al. Tetrahedron Lett 35 433 1994], It also catalyses the trans addition of indole (at position 3) to epoxides (e.g. to phenoxymetltyloxirane) in >50% yields at 60° (42 hours) under pressure (10 Kbar) and was successfully applied for an enantioselective synthesis of (+)-diolmycin A2 [Kotsuki Tetrahedron Lett 37 3727 799(5]. Of the ten lanthanide triflates, Yb(OTf)3 gave the highest yields (> 90%, see above) of condensation products by catalytically activating formaldehyde, and a variety of aldehydes, in hydroformylations and aldol reactions, respectively, with trimethylsilyl enol-ethers in THF at room temperature. All the lanthanide triflates can be recovered from these reactions for re-use. [Kobayashi Hachiya J Org Chem 59 3590 1994.]... [Pg.694]

The combination of an imine derived from the reaction of acrolein organocatalyst 1 with simple indoles 84 and nitroalkenes 85 affords the 3-(cyclohexenylmethyl)-indoles 86 (Scheme 7.16) [59]. In this reaction, the indole 84 initiates the Friedel-Crafts-type reaction followed by a Michael reaction with nitroalkenes 85 to the intermediate 87. From this process, a hydrolysis takes place and the resulting compound enters another catalytic cycle involving a Michael/aldol condensation reaction similar to those reported previously. [Pg.231]

The observed excellent stereoselectivities (dr=91 9 to >95 5, 94 to >99% ee) could be ascribed to the steric hindrance created by the employed catalyst in each step of the catalytic cycle reported below (Scheme 2.56). Once the chiral amine (S)-70 activates the acrolein 131 as electrophile by generating the vinylogous iminium ion A, the indole 171 performs an intermolecular Friedel-Crafts-type reaction. The resulting enamine B acts as nucleophile in the Michael addition of the nitroalkene 140 leading to the iminium ion D, which upon hydrolysis liberates the catalyst and yields the intermediate aldehyde 173. The latter compound enters in the second cycle by reacting with the iminium ion A, previously formed by the free catalyst. The subsequent intramolecular enamine-mediated aldol reaction of E completes the ring closure generating the intermediate F, which after dehydration and hydrolysis is transformed in the desired indole 172. [Pg.47]

More recently, Enders et al. disclosed a facile access to tetracyclic double annulated indole derivatives 175, which basically relies on the chemistry of the acidic 2-substituted indole and its nitrogen nucleophilicity. Indeed, the employed quadruple cascade is initiated by the asymmetric aza-Michael-type A-alkylation of indole-2-methylene malono-nitrile derivative 174 to o,p-unsaturated aldehydes 95 under iminium activation (Scheme 2.57). The next weU-known enamine-iminium-enamine sequence, which practically is realized with an intramolecular Michael addition followed by a further intermolecular Michael and aldol reactions, gives access to the titled tetracyclic indole scaffold 175 with A-fused 5-membered rings annulated to cyclohexanes in both diastereo- and enantioselectivity [83]. [Pg.47]

The use of phosphoric acid ml-lGd for the catalysis of a tandem double F-C reaction gave rise to fluorene derivatives (up to 96% ee) by the reaction between indoles and 2-formylbiphenyl derivatives [74]. Vinyl indole derivatives combined with a,P-unsaturated aldehydes gave rise to functionalized tetrahydrocarbazoles with two or more stereocenters via an intermolecular triple cascade process by means of secondary amine 7a catalysis [75]. Catalyst 7a also promoted a quadruple F-C/Michael/Michael/aldol condensation reaction between indoles, acrolein, and aromatic nitroolefins (Scheme 35.19) [76]. This work provides a straightforward... [Pg.1055]


See other pages where Aldol reaction with indole is mentioned: [Pg.215]    [Pg.144]    [Pg.122]    [Pg.288]    [Pg.13]    [Pg.50]    [Pg.76]    [Pg.1214]    [Pg.122]    [Pg.350]    [Pg.67]    [Pg.34]    [Pg.69]    [Pg.79]    [Pg.870]    [Pg.122]    [Pg.976]    [Pg.321]    [Pg.302]    [Pg.435]    [Pg.349]    [Pg.291]    [Pg.247]    [Pg.514]    [Pg.293]    [Pg.221]    [Pg.337]    [Pg.401]    [Pg.83]    [Pg.133]    [Pg.377]    [Pg.331]    [Pg.210]    [Pg.56]   
See also in sourсe #XX -- [ Pg.445 ]




SEARCH



Indole reactions

Indoles reactions

Indoles reactions with

© 2024 chempedia.info