Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction 1,2-dicarbonyls

The mechanism of the Feist-Benary reaction involves an aldol reaction followed by an intramolecular 0-alkylation and dehydration to yield the furan product. In the example below, ethyl acetoacetate (9) is deprotonated by the base (B) to yield anion 10 this carbanion reacts with chloroacetaldehyde (8) to furnish aldol adduct 11. Protonation of the alkoxide anion followed by deprotonation of the [i-dicarbonyl in 12 leads to... [Pg.160]

A route to pyridines which involves an isolated 1,5-dicarbonyl compound, has been reported. Aldol reaction of enone 57 with methylketone 58 generated 1,5-diketone 59. When this was submitted to the reaction conditions for a Krohnke reaction, thiopyridine 60 was isolated. [Pg.311]

The following molecule was formed by an intramolecular aldol reaction. What dicarbonyl precursor was used for its preparation ... [Pg.907]

Efforts were made by Garcia Gonzalez and his coworkers to elucidate the mechanism of this reaction. In one of the working hypotheses, it was considered that the aldehydo form of the sugar and the 1,3-dicarbonyl compound undergo an aldol reaction to yield a 2-C-(alditol-l-yl)-l,3-dicar-bonyl compound, which is then dehydrated to form the furan. This hypothesis was supported by the isolation of the aldol-addition product of... [Pg.13]

The aldol reaction can be applied to dicarbonyl compounds in which the two groups are favorably disposed for intramolecular reaction. Kinetic studies on cyclization of 5-oxohexanal, 2,5-hexanedione, and 2,6-heptanedione indicate that formation of five-membered rings is thermodynamically somewhat more favorable than formation of six-membered rings, but that the latter is several thousand times faster.170 A catalytic amount of acid or base is frequently satisfactory for formation of five- and six-membered rings, but with more complex structures, the techniques required for directed aldol condensations are used. [Pg.134]

Finally, aldol reactions can, with suitable dicarbonyl compounds, e.g. (99), be intramolecular, i.e. cyclisations ... [Pg.226]

With a synthesis of 58 completed, the key intramolecular diketone aldol cyclization was investigated. Precedent for this type of 1,8-dicarbonyl aldol reaction is rare, although an aldol reaction has been proposed in the biosynthetic pathway to the hypocrellins. The only reported examples of such diketone aldol cyclizations involve multicyclic or bridged bicyclic systems, and of these no examples exist for 1,8-diketones forming 7-membered rings. MM2 calculations indicated that a... [Pg.170]

Aldoses generally undergo benzilic acid-type rearrangements to produce saccharinic acids, as well as reverse aldol (retro-aldol) reactions with j3-elimination, to afford a-dicarbonyl compounds. The products of these reactions are in considerable evidence at elevated temperatures. The conversions of ketoses and alduronic acids, however, are also of definite interest and will be emphasized as well. Furthermore, aldoses undergo anomerization and aldose-ketose isomerization (the Lobry de Bruyn-Alberda van Ekenstein transformation ) in aqueous base. However, both of these isomerizations are more appropriately studied at room temperature, and will be considered only in the context of other mechanisms. [Pg.281]

The cationic iridium complex [Ir(cod)(PPh3)2]OTf, when activated by H2, catalyzes the aldol reaction of aldehydes 141 or acetal with silyl enol ethers 142 to afford 143 (Equation 10.37) [63]. The same Ir complex catalyzes the coupling of a, 5-enones with silyl enol ethers to give 1,5-dicarbonyl compounds [64]. Furthermore, the alkylation of propargylic esters 144 with silyl enol ethers 145 catalyzed by [Ir(cod)[P(OPh)3]2]OTf gives alkylated products 146 in high yields (Equation 10.38) [65]. An iridium-catalyzed enantioselective reductive aldol reaction has also been reported [66]. [Pg.269]

Both aldol and Claisen reactions are equilibria, and product formation is a result of disturbing these equilibria. This would be dehydration in aldol reactions and ionization in Claisen reactions. Ionization would be the more immediate determinant. On that basis, it is obvious that the 1,3-dicarbonyl products from Claisen reactions are going to be more acidic than the aldol products, which possess just one carbonyl group. [Pg.384]

Hydroxycoumarin can be considered as an enol tautomer of a 1,3-dicarbonyl compound conjugation with the aromatic ring favours the enol tautomer. This now exposes its potential as a nucleophile. Whilst we may begin to consider enolate anion chemistry, no strong base is required and we may formulate a mechanism in which the enol acts as the nucleophile, in a simple aldol reaction with formaldehyde. Dehydration follows and produces an unsaturated ketone, which then becomes the electrophile in a Michael reaction (see Section 10.10). The nucleophile is a second molecule of 4-hydroxycoumarin. [Pg.419]

Rate and equilibrium constants have been measured for representative intramolecular aldol condensations of dicarbonyls.60a For the four substrates studied (32 n = 2, R = Me n = 3, R = H/Me/Ph), results have been obtained for both the aldol addition to give ketol (33), and the elimination to the enone (34). A rate-equilibrium mismatch for the overall process is examined in the context of Baldwin s rales. The data are also compared with Richard and co-workers study of 2-(2-oxopropyl)benzaldehyde (35), for which the enone condensation product tautomerizes to the dienol60b (i.e. /(-naphthol). In all cases, Marcus theory can be applied to these intramolecular aldol reactions, and it predicts essentially the same intrinsic barrier as for their intermolecular counterparts. [Pg.11]

In the case of (11), retrosynthetic functional group interconversion into the aldol followed by disconnection of the a, /3-bond gives the dipolar synthon (15), of which the reagent equivalent is the 1,4-dicarbonyl compound, hexane-2,5-dione (i.e. a refro-aldol condensation). The action of base on this diketone effects the forward aldol reaction followed by spontaneous dehydration (see Expt 7.4 for formulation). [Pg.1093]

The intramolecular aldol reactions reported so far can be divided into two different types. The first is a enantioselective aldol reaction starting from a dicarbonyl compounds of type 81. In these reactions, products with two stereogenic centers, 82, are formed. The reaction is shown in Scheme 6.39, Eq. (1). These products can be converted into derivatives, particularly lactones. [Pg.166]

Attempts to react enol(ate)s of esters with aliphatic aldehydes are doomed as the aldehyde will simply condense with itself. If the ester is replaced by a malonate 60, there is so much enol(ate) from the (5-dicarbonyl compound that the reaction is good. This style of aldol reaction is often called a Knoevenagel reaction10 and needs only a buffered mixture of amine and carboxylic acid. The enol reacts with the aldehyde 61 in the usual way and enolisation of the product 62 usually means that dehydration occurs under the conditions of the reaction. [Pg.144]

The sequence of cyclohexene cleavage and aldol reaction on the dicarbonyl product gives ring-contracted cyclopentenes. This proved particularly valuable when Iwata6 wanted to make subergorgic acid 41 that has three five-membered rings awkwardly joined around a quaternary carbon atom. So crowded are these compounds that they are difficult to draw clearly. Ozono-lysis of the synthetic cyclohexene 38 gave the unstable dialdehyde 39 that cyclised by an aldol condensation to 40 and hence could be oxidised to 41. [Pg.203]

Heterocyclic aroma compounds found in meat primarily arise from interactions between mono- and dicarbonyl compounds, H2S and ammonia. The carbonyl compounds are derived from the Maillard reaction, including Strecker degradation of amino acids, oxidation of lipids and aldolization reactions. H2S is produced by thermal degradation of sulfur amino acids and ammonia by amino acid pyrolysis. [Pg.430]

When a normal carbonyl compound is treated with catalytic acid or base, we have a small proportion of reactive enol or enolate in the presence of large amounts of unenolized electrophile. Aldol reaction (self-condensation) occurs. With 1,3-dicarbonyl compounds we have a small proportion of not particularly reactive unenolized compound in the presence of large amounts of stable (and hence unreactive) enol. No aldol occurs. [Pg.702]

When you need to synthesize a p-hydroxy ketone or aldehyde or an a,p-unsaturated ketone or aldehyde, use an aldol reaction. When you need to synthesize a p-diketone or p-keto ester, use a Claisen reaction. When you need to synthesize a 1,5-dicarbonyl compound, use a Michael reaction. The Robinson annulation is used to synthesize polycyclic molecules by a combination of a Michael reaction with an aldol condensation. [Pg.685]

In the lithium and cesium enolates of o-methoxyacetophenone, the methoxy oxygen coordinates with the smaller lithium cation but not with the cesium cation . Other examples of lithium enolate chemistry include a thermochemical analysis of the aldol reaction of lithiopinacolonate with pivalaldehyde and a comparison of the proton affinities and aggregation states of lithium alkoxides, phenolates, enolates, -dicarbonyl enolates, carboxylates and amidates. Although the lithium enolate of cyclopropanone itself remains unknown, derivatives (accompanied by their aUenoxide isomer) have been implicated in the reaction of a-(trimethylsilyl) vinyl lithium with CO. That both species are seemingly formed is surprising because cyclopropanone enolate is expected to be much less stable than its acyclic isomer cyclopropene is less stable than allene by almost 90 kJmol-. ... [Pg.189]

A second entry to dicarbonyl substrates utilizes the aldol reaction to establish the a-methyl center prior to oxidation of the p-hydroxyl moiety. Commonly, this oxidation is performed using the Sulfur Trioxide-Pyridine complex, which results in <1% epimerization of the methyl-bearing center (eq 34). Interestingly, this procedure procures the opposite methyl stereochemistry from that obtained through enolate acylation of the same enantiomer of oxazolidinone. [Pg.62]

Another useful crossed aldol reaction takes place between an aldehyde or ketone and a (i-dicarbonyl (or similar) compound. [Pg.923]

As we learned in Section 23.3, the a hydrogens between two carbonyl groups are especially acidic, and so they are more readily removed than other a H atoms. As a result, the p-dicarbonyl compound always becomes the enolate component of the aldol reaction. Figure 24.2 shows the steps for the crossed aldol reaction between diethyl malonate and benzaidehyde. In this type of crossed aldol reaction, the initial P-hydroxy carbonyl compound always loses water to form the highly conjugated product. [Pg.923]

Aldol reactions with dicarbonyl compounds can be used to make five- and six-membered rings. The enolate formed from one carbonyl group is the nucleophile, and the carbonyl carbon of the other carbonyl group is the electrophile. For example, treatment of 2,5-hexanedione with base forms a five-membered ring. [Pg.926]

In a similar fashion, six-membered rings can be formed from the intramolecular aldol reaction of 1,5-dicarbonyl compounds. [Pg.927]

Step [2] Intramolecular aldol reaction of the 1,5-dicarbonyl compound with dilute "OH in HgO solution forms progesterone. [Pg.928]

Dicarbonyl compounds are starting materials for intramolecular aldol reactions, as described in Section 24.4. [Pg.935]

The mechanism of the Robinson annulation consists of two parts a Michael addition to the a,p-unsaturated carbonyl compound to form a 1,5-dicarbonyl compound, followed by an intramolecular aldol reaction to form the six-membered ring. The mechanism is written out in two parts (Mechanisms 24.7 and 24.8) for Reaction [2] between methyl vinyl ketone and 2-methyl-1,3-cyclohexanedione. [Pg.936]


See other pages where Aldol reaction 1,2-dicarbonyls is mentioned: [Pg.305]    [Pg.32]    [Pg.14]    [Pg.91]    [Pg.115]    [Pg.95]    [Pg.315]    [Pg.585]    [Pg.87]    [Pg.133]    [Pg.86]    [Pg.146]    [Pg.158]    [Pg.454]    [Pg.145]   
See also in sourсe #XX -- [ Pg.115 , Pg.116 , Pg.117 , Pg.118 ]




SEARCH



Dicarbonyl compound aldol reactions with

Dicarbonyl compounds, aldol reactions

© 2024 chempedia.info