Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol Products Synthesis of Enones

A total synthesis of functionalized 8,14-seco steroids with five- and six-membered D rings has been developed (467). The synthesis is based on the transformation of (S)-carvone into a steroidal AB ring moiety with a side chain at C(9), which allows the creation of a nitrile oxide at this position. The nitrile oxides are coupled with cyclic enones or enol derivatives of 1,3-diketones, and reductive cleavage of the obtained cycloadducts give the desired products. The formation of a twelve-membered ring compound has been reported in the cycloaddition of one of the nitrile oxides with cyclopentenone and as the result of an intramolecular ene reaction, followed by retro-aldol reaction. [Pg.92]

Isoxazolines can be transformed into a,p-enones by several methods from the initial aldol product. This strategy was applied by Barco et al. (285) toward the synthesis of ( )-pyrenophorin (98), a macrocychc fow(enone-lactone) with antifungal properties. The hydroxy group was introduced from the nitrile oxide component (95), while the carboxy function was derived from the acrylate dipo-larophile. Thus, cycloaddition of the optically active nitropentyl acetate 94 to methyl acrylate 95 afforded isoxazoline 96 as a mixture of optically active diastereomers. Reductive hydrolysis using Raney nickel/acetic acid gave p-hydro-xyketone (97), which was subsequently utilized for the synthesis of (—)-pyreno-phorin (98) (Scheme 6.63) (285). [Pg.424]

Another related synthesis made use of the intramolecular cycloaddition of co-nitroalkene 243, also derived from geraniol epoxide 237. Generation of the expected nitrile oxide dipole using p-chlorophenyl isocyanate and triethylamine quantitatively gave the annulated isoxazoline 244 as a 2 1 mixture of diastereo-isomers (Scheme 6.94). Reductive hydrolysis of the cycloadduct to the aldol product followed by dehydration provided enone 245, which was used to prepare the sesquiterpene nanaimoal 246 (242). [Pg.448]

Takano et al. 69) exploited the asymmetric aldolization for the synthesis of more functionalized chiral products which possess units suitable for the construction of certain tetracyclic triterpenes, such as gibberellins and kaurenes. They described the enantioselective synthesis of the tricyclic enone (33) from the symmetric triketone (32) and its conversion into the gibbane framework. Again, (S)-proline was used as the catalyst. [Pg.177]

The organocatalytic asymmetric intramolecular aldol reaction has also been used in the synthesis of a gibbane framework [117]. The proline-catalyzed aldol cycliza-tion of the triketone 104 into the tricyclic system 106 proceeds via the unstable ketol 105 (Scheme 6.47). For this reaction, which occurred at room temperature, a catalytic amount (10 mol%) of L-proline was used. The enone 106 was furnished in 92% yield and a single recrystallization resulted in an enantiomerically pure sample of 106. This aldol product 106 served as a useful intermediate in the synthesis of the desired gibbane framework. [Pg.172]

The first enantioselective total synthesis of tetracyclic sesquiterpenoid (+)-cyclomyltaylan-5a-ol, isolated from a Taiwanese liverwort, was accomplished by H. Hagiwara and co-workers. They started out from Hajos-Parrish ketone analogue, (S)-(+)-4,7a-dimethyl-2,3,7,7a-tetrahydro-6/-/-indene-1,5-dione, that could be synthesized from 2-methylcyclopentane-1,3-dione and ethyl vinyl ketone in an acetic acid-catalyzed Michael addition followed by an intramolecular aldol reaction. The intramolecular aldol reaction was carried out in the presence of one equivalent (S)-(-)-phenylalanine and 0.5 equivalent D-camphorsulfonic acid. The resulting enone was recrystallized from hexane-diethyl ether to yield the product in 43% yield and 98% ee. Since the absolute stereochemistry of the natural product was unknown, the total synthesis also served to establish the absolute stereochemistry. [Pg.193]


See other pages where Aldol Products Synthesis of Enones is mentioned: [Pg.882]    [Pg.883]    [Pg.1331]    [Pg.940]    [Pg.882]    [Pg.883]    [Pg.942]    [Pg.15]    [Pg.962]    [Pg.882]    [Pg.883]    [Pg.942]    [Pg.904]    [Pg.909]    [Pg.882]    [Pg.883]    [Pg.1331]    [Pg.940]    [Pg.882]    [Pg.883]    [Pg.942]    [Pg.15]    [Pg.962]    [Pg.882]    [Pg.883]    [Pg.942]    [Pg.904]    [Pg.909]    [Pg.17]    [Pg.202]    [Pg.98]    [Pg.171]    [Pg.83]    [Pg.171]    [Pg.214]    [Pg.545]    [Pg.545]    [Pg.171]    [Pg.344]    [Pg.943]    [Pg.545]    [Pg.171]    [Pg.1982]    [Pg.945]    [Pg.226]    [Pg.965]    [Pg.192]    [Pg.193]    [Pg.321]    [Pg.384]    [Pg.2]    [Pg.213]   


SEARCH



Aldol products

Aldol syntheses

Aldolate product

Enones products

Enones, synthesis

Of enone

Of enones

© 2024 chempedia.info