Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes alditols

The reaction is used for the chain extension of aldoses in the synthesis of new or unusual sugars In this case the starting material l arabinose is an abundant natural product and possesses the correct configurations at its three chirality centers for elaboration to the relatively rare l enantiomers of glucose and mannose After cyanohydrin formation the cyano groups are converted to aldehyde functions by hydrogenation m aqueous solution Under these conditions —C=N is reduced to —CH=NH and hydrolyzes rapidly to —CH=0 Use of a poisoned palladium on barium sulfate catalyst prevents further reduction to the alditols... [Pg.1056]

Alditol (Section 25 18) The polyol obtained on reduction of the carbonyl group of a carbohydrate Aldol addition (Section 18 9) Nucleophilic addition of an aldehyde or ketone enolate to the carbonyl group of an aide hyde or a ketone The most typical case involves two mole cules of an aldehyde and is usually catalyzed by bases... [Pg.1275]

Treatment of an aldose or ketose with NaBH4 reduces it to a polyalcohol called an alditol. The reduction occurs by reaction of the open-chain form present in the aldehyde/ketone hemiacetal equilibrium. Although only a small amount of the open-chain form is present at any given time, that small amount is reduced, more is produced by opening of the pyranose form, that additional amount is reduced, and so on, until the entire sample has undergone reaction. [Pg.992]

Much of the chemistry of monosaccharides is the familiar chemistry of alcohols and aldehydes/ketones. Thus, the hydroxyl groups of carbohydrates form esters and ethers. The carbonyl group of a monosaccharide can be reduced with NaBH4 to form an alditol, oxidized with aqueous Br2 to form an aldonic acid, oxidized with HNO3 to form an aldaric acid, oxidized enzymatically to form a uronic acid, or treated with an alcohol in the presence of acid to form a glycoside. Monosaccharides can also be chain-lengthened by the multistep Kiliani-Fischer synthesis and can be chain-shortened by the Wohl degradation. [Pg.1007]

The name of an aldose derivative in which the aldehyde group has been replaced by a terminal CH3 group is derived from that of the appropriate alditol (see 2-Carb-19) by use of the prefix deoxy- . [Pg.83]

Reduction of the aldehyde or ketone group in a sugar is readily achieved using a variety of reducing agents. Reduction occurs on the small amount of open-chain form present at equilibrium. As the open-chain form is removed, the equilibrium is disturbed until total reduction is achieved. The products are polyhydroxy compounds termed alditols. Reduction... [Pg.473]

This enzyme [EC 1.1.1.21], also known as aldehyde reductase and polyol dehydrogenase (NADP ), catalyzes the reaction of an alditol with NAD(P) to generate an aldose and NAD(P)H. The enzyme exhibits a broad specificity for the alditol. [Pg.46]

Less is known concerning the partial, acid hydrolysis of alditol polyacetals derived from ketones, compared to those derived from aldehydes. The acid hydrolysis of 1,2 3,4 5,6-tri-O-isopropylidene-D-mannitol to 3,4-O-isopropylidene-D-mannitol55,56 and of l,2 3,4-di-0-isopropylidene-L-rhamnitol to 3,4-O-isopropylidene-L-rhamnitol57 indicates an order of isopropylidene acetal stability of a-threo > a, and this order is supported by the partial hydrolysis of 2,3 4,5-di-O-isopro-pylidene derivatives of dialkyl dithioacetals of D-arabinose58 and D-xylose59 to 2,3-acetals. [Pg.22]

Several reviews have already been published on the subject, for example, the acetala-tion of alditols [4], of aldoses and aldosides [5,6], and of ketoses [7]. Some aspects of the stereochemistry of cyclic acetals have been discussed in a review dealing with cyclic derivatives of carbohydrates [8], also in a general article [9] and, more recently, in a chapter of a monograph devoted to the stereochemistry and the conformational analysis of sugars [10], Aspects on predicting reactions patterns of alditol-aldehyde reactions are reviewed within a general series of books on carbohydrates [11]. The formation and migration of cyclic acetals of carbohydrates have also been reviewed [12,13],... [Pg.5]

Air classification, starch isolation, 674-675 Aldehydes, see also Carbonyl compounds citrus oils, quantification meats, effect on flavor, 559 Alditol acetates... [Pg.757]

Monosaccharides can be oxidized at the aldehyde carbon to give carboxylic acids called aldonic acids. Oxidation at both ends of the carbon chain gives aldaric acids. Reduction of the carbonyl group to an alcohol gives polyols called alditols. The -OH groups in sugars, like those in simpler alcohols, can be esterified or etherified. [Pg.291]

Decarbonylation of aldoses.2 Although this rhodium complex has been known since 1968 to effect decarbonylation of aldehydes, it has been used for decarbonylation of sugars only recently, probably for lack of a compatible solvent. Actually, this reaction when carried out in N-methyl-2-pyrrolidinone (NMP) at 110-130° is extremely useful in the case of simple aldoses, which are converted to the lower alditol with formation of carbonylchlorobis(triphenylphosphine)rhodium(I). The yields are 75-95%. This method of degradation has the further advantage that protecting groups are not necessary. Deoxyaldoses, particularly 2-deoxyaldoses, are decar-bonylated in 75-99% yield. A disadvantage of this reaction is that a full equivalent of the complex is required. [Pg.87]

A different type of reduced sugar is an alditol, in which the aldehyde group of an aldose has been reduced. For example, the alditol produced from D-glucose is D-glucitol (the trivial name is sorbitol). The name of an alditol is obtained by adding -itol to the root of the name of the aldose (except for glycerol, a reduction product of glyceraldehyde). [Pg.40]

All monosaccharides and their derivatives that possess aldehyde or ketone groups (that is, excepting derivatives such as alditols and aldonic acids) will have reducing properties. Moreover, those with the appropriate number of carbon atoms can form rings occurring in two forms (anomers) and in which the potential reducing carbon is called the anomeric carbon. [Pg.42]

Like other aldehydes, the carbonyl group of an aldose is reduced to a 1° alcohol using NaBIif. This alcohol is called an alditol. For example, reduction of D-glucose with NaBH4 in CH3OH yields glucitol (also called sorbitol). [Pg.1047]

Alditol (Section 27.9A) A compoimd formed by the reduction of the aldehyde of an aldose to a primary alcohol. [Pg.1195]

After reduction of the enal with diisobutylaluminium hydride, the Wittig olefination of D-glycer-aldehyde acetonide (7 )-24 with Ph3P=CHCHO gives the ( )-allylic alcohol 129. The Katsuki-Sharpless enantioselective epoxidation [89] applied to 129 allows the preparation of D-arabinitol (= D-lyxitol) and ribitol, a meso alditol (Scheme 13.47). Similarly, Wittig olefination of R)-2A with Ph3P=CHCH(OEt)2, followed by acidic hydrolysis of the diethyl acetal and subsequent reduction of the enal with diisobutylaluminium hydride, provides the (Z)-allylic alcohol 130. Diastereoselective epoxidation and hydrolysis leads to D-arabinitol or xylitol, another meso alditol [90a]. [Pg.669]


See other pages where Aldehydes alditols is mentioned: [Pg.69]    [Pg.6]    [Pg.124]    [Pg.301]    [Pg.21]    [Pg.115]    [Pg.340]    [Pg.11]    [Pg.1116]    [Pg.1117]    [Pg.129]    [Pg.142]    [Pg.1007]    [Pg.45]    [Pg.9]    [Pg.186]    [Pg.53]   
See also in sourсe #XX -- [ Pg.21 , Pg.39 ]




SEARCH



Alditol

Alditols

© 2024 chempedia.info