Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols alkylation reactions

It is used as a catalyst in esterification, dehydration, polymerization and alkylation reactions. Converted by e.g., ihionyl chloride, to melhanesulphonyl chloride (mesyl chloride) which is useful for characterizing alcohols, amines, etc. as melhanesulphonyl (mesyl) derivatives. [Pg.258]

Other catalysts which may be used in the Friedel - Crafts alkylation reaction include ferric chloride, antimony pentachloride, zirconium tetrachloride, boron trifluoride, zinc chloride and hydrogen fluoride but these are generally not so effective in academic laboratories. The alkylating agents include alkyl halides, alcohols and olefines. [Pg.509]

We 11 begin with the preparation of alkyl halides from alcohols by reaction with hydro gen halides... [Pg.152]

Section 8 14 Nucleophilic substitution can occur with leaving groups other than halide Alkyl p toluenesulfonates (tosylates) which are prepared from alcohols by reaction with p toulenesulfonyl chloride are often used... [Pg.357]

Both reactants m the Williamson ether synthesis usually originate m alcohol pre cursors Sodium and potassium alkoxides are prepared by reaction of an alcohol with the appropriate metal and alkyl halides are most commonly made from alcohols by reaction with a hydrogen halide (Section 4 7) thionyl chloride (Section 4 13) or phosphorus tri bromide (Section 4 13) Alternatively alkyl p toluenesulfonates may be used m place of alkyl halides alkyl p toluenesulfonates are also prepared from alcohols as their imme diate precursors (Section 8 14)... [Pg.673]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

Aluminum chloride dissolves readily in chlorinated solvents such as chloroform, methylene chloride, and carbon tetrachloride. In polar aprotic solvents, such as acetonitrile, ethyl ether, anisole, nitromethane, and nitrobenzene, it dissolves forming a complex with the solvent. The catalytic activity of aluminum chloride is moderated by these complexes. Anhydrous aluminum chloride reacts vigorously with most protic solvents, such as water and alcohols. The ability to catalyze alkylation reactions is lost by complexing aluminum chloride with these protic solvents. However, small amounts of these "procatalysts" can promote the formation of catalyticaHy active aluminum chloride complexes. [Pg.147]

The mechanism of the alkylation reaction is similar to curing. The methylo1 group becomes protonated and dissociates to form a carbonium ion intermediate which may react with alcohol to produce an alkoxymethyl group or with water to revert to the starting material. The amount of water in the reaction mixture should be kept to a minimum since the relative amounts of alcohol and water determine the final equiHbrium. [Pg.324]

Examples are given of common operations such as absorption of ammonia to make fertihzers and of carbon dioxide to make soda ash. Also of recoveiy of phosphine from offgases of phosphorous plants recoveiy of HE oxidation, halogenation, and hydrogenation of various organics hydration of olefins to alcohols oxo reaction for higher aldehydes and alcohols ozonolysis of oleic acid absorption of carbon monoxide to make sodium formate alkylation of acetic acid with isobutylene to make teti-h ty acetate, absorption of olefins to make various products HCl and HBr plus higher alcohols to make alkyl hahdes and so on. [Pg.2110]

Sulfonate esters are especially useful substrates in nucleophilic substitution reactions used in synthesis. They have a high level of reactivity, and, unlike alkyl halides, they can be prepared from alcohols by reactions that do not directly involve bonds to the carbon atom imdeigoing substitution. The latter aspect is particularly important in cases in which the stereochemical and structural integrity of the reactant must be maintained. Sulfonate esters are usually prepared by reaction of an alcohol with a sulfonyl halide in the presence of pyridine ... [Pg.296]

Reaction of dibenzylamine with ethylene oxide affords the amino alcohol, 82. Treatment of that product with thionyl chloride gives the a-sympathetic blocking agent, dibenamine (83). (Condensation of phenol with propylene chlorohydrin (84) gives the alcohol, 85. Reaction with thionyl chloride affords the chloride (86). Use of the halide to alkylate ethanolamine affords the secondary amine (87). Alkylation of this last with benzyl chloride... [Pg.55]

Methylamines can be synthesized by alkylating ammonia with methyl halides or with methyl alcohol. The reaction with methanol usually occurs at approximately 500°C and 20 atmospheres in the presence of an... [Pg.159]

Note that in the S l reaction, which is often carried out under acidic conditions, neutral water can act as a leaving group. This occurs, for example, when an alkyl halide is prepared from a tertiary alcohol by reaction with HBr or HC1 (Section 10.6). The alcohol is first protonated and then spontaneously loses H2O to generate a carbocation, which reacts with halide ion to give the alkyl halide (Figure 11.13). Knowing that an SN1 reaction is involved in the conversion of alcohols to alkyl halides explains why the reaction works well only for tertiary alcohols. Tertiary alcohols react fastest because they give the most stable carbocation intermediates. [Pg.378]

Sulphated zirconia catalysts can be acidic or superacidic depending on the method of treatment. A variety of acid-catalysed reactions, referred to earlier in this section, can be carried out with sulphated zirconia. Yadav and Nair (1999) have given a state-of-the art review on this subject. Examples of benzylation of benzene with benzyl chloride / benzyl alcohol, alkylation of o-xylene with. styrene, alkylation of diphenyl oxide with 1-dodecene, isomerization of epoxides to aldehydes, acylation of benzene / chlorobenzene with p-chloro benzoylchloride, etc. are covered in the review. [Pg.137]

Organozinc reagents have been used in conjunction with a-bromovinylboranes in a tandem route to Z-trisubstituted allylic alcohols. After preparation of the vinylborane, reaction with diethylzinc effects migration of a boron substituent with inversion of configuration and exchange of zinc for boron.176 Addition of an aldehyde then gives the allylic alcohol. The reaction is applicable to formaldehyde alkyl and aryl aldehydes and to methyl, primary, and secondary boranes. [Pg.660]

Polyene Cyclization. Perhaps the most synthetically useful of the carbo-cation alkylation reactions is the cyclization of polyenes having two or more double bonds positioned in such a way that successive bond-forming steps can occur. This process, called polyene cyclization, has proven to be an effective way of making polycyclic compounds containing six-membered and, in some cases, five-membered rings. The reaction proceeds through an electrophilic attack and requires that the double bonds that participate in the cyclization be properly positioned. For example, compound 1 is converted quantitatively to 2 on treatment with formic acid. The reaction is initiated by protonation and ionization of the allylic alcohol and is terminated by nucleophilic capture of the cyclized secondary carbocation. [Pg.864]


See other pages where Alcohols alkylation reactions is mentioned: [Pg.540]    [Pg.298]    [Pg.317]    [Pg.103]    [Pg.83]    [Pg.222]    [Pg.175]    [Pg.175]    [Pg.182]    [Pg.23]    [Pg.708]    [Pg.795]    [Pg.1205]    [Pg.77]    [Pg.256]    [Pg.133]    [Pg.8]    [Pg.4]    [Pg.18]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.10 ]




SEARCH



Alcohol-alkyl azide reaction, intermolecular

Alcohols alkylated

Alcohols alkylation

Alcohols reaction with alkyl halides

Alkyl alcohols

Alkyl groups alcohol reactions with hydrogen halides

Alkyl hahde reaction with alcohols

Alkyl halides alcohol reactions with hydrogen

Alkyl halides, from alcohols reactions

Biological reaction, alcohol ketone alkylation

Halides, alkyl, reaction with amino-alcohols

Hydrogen bromide reaction with alkyl alcohols

Intramolecular reactions alcohol-alkyl azide reaction

Mitsunobu reaction alkyl alcohols

Mitsunobu reaction, alkylation from alcohols

Schmidt reactions alcohol-alkyl azides

Sn2 substitution reactions conversion of alcohols to alkyl halides

© 2024 chempedia.info