Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol biological dehydration

The aqueous layer from the ester column distillate, the raffinate from washing the ester, and the aqueous phase from the dehydration step are combined and distilled in the alcohol stripper. The wet alcohol distillate containing a low level of acrylate is recycled to the esterification reactor. The aqueous column bottoms are incinerated or sent to biological treatment. Biological treatment is common. [Pg.154]

In biological pathways, dehydrations rarely occur with isolated alcohols but instead normally take place on substrates in which the -OH is positioned two carbons away from a carbonyl group. In the biosynthesis of fats, for instance, /3-hydroxybutyry) ACP is converted by dehydration to tram-crotonyl ACP, where ACP is an abbreviation for acyl carrier protein. We ll see the reason for this requirement in Section 11.10. [Pg.215]

All three elimination reactions--E2, El, and ElcB—occur in biological pathways, but the ElcB mechanism is particularly common. The substrate is usually an alcohol, and the H atom removed is usually adjacent to a carbonyl group, just as in laboratory reactions. Thus, 3-hydroxy carbonyl compounds are frequently converted to unsaturated carbonyl compounds by elimination reactions. A typical example occurs during the biosynthesis of fats when a 3-hydroxybutyryl thioester is dehydrated to the corresponding unsaturated (crotonyl) thioester. The base in this reaction is a histidine amino acid in the enzyme, and loss of the OH group is assisted by simultaneous protonation. [Pg.393]

A third important reaction of alcohols, both in the laboratory and in biological pathways, is their dehydration to give alkenes. The C-0 bond and a neighboring C—H are broken, and an alkene tt bond is formed. [Pg.619]

This beneficial effect of fluorination on hydrolytic stability has also been demonstrated with the synthetic prostaglandin SC-46275 (Fig. 70). This compound possesses an anti-secretory activity that protects the stomach mucous membrane. However, its clinical development was too problematic because of the instability of the tertiary allyl alcohol in acidic medium (epimerisation, dehydration, etc.). A fluorine atom was introduced on the C-16 methyl to disfavour the formation of the allylic carbocation. This fluorinated analogue possesses the same biological activity, but does not undergo any degradation or rearrangement, and itepimerises only slowly [165]. [Pg.607]

The synthesis of 6a-methyldigitoxigenin acetate (394) has been reported according to Scheme 19.198 Pregn-4-en-21-ol-3,20-dione was converted into its 6a-methyl derivative (387) using a previously described five-step reaction sequence biological hydroxylation furnished the 14a,12-diol (388) and reduction of the derived 21-acetate gave the 5/3-dihydro-steroid (389). Dehydration furnished the A14-olefin (390) which was converted into the 21-mesylate and thence into the lactone (391) by reaction with the monoethyl ester of malonic acid. The crude lactone was decarbox-ylated, reduced to the 3/3-alcohol (392), and converted into the bromohydrin (393) via its 3/3-acetate and thence by debromination into 6a-methyldigitoxigen 3-acetate... [Pg.336]

This esterified hemin is soluble in ligating solvents such as pyridine and also halogenated hydrocarbons, ethers such as tetrahydrofuran, and benzene. It is slightly soluble in alcohols and insoluble in water. In the presence of traces of water in a solution it will slowly convert to the n-oxo form. It can also dehydrate to the proto forms i under specific conditions. Other chemical, physical, and biological properties are similar to those for the protoporphyrin IX com-plex.i Extinction coefficients for the various characteristic spectra of this material are not well defined, as the solutions are generally unstable with time, going to mixtures of the various ligated and jx-oxo forms. [Pg.219]

In biological systems the hydroxyl group is often involved in a variety of reactions such as oxidation, reduction, hydration, and dehydration. In glycolysis (a metabolic pathway by which glucose is degraded and energy is harvested in the form of ATP), several steps center on the reactivity of the hydroxyl group. The majority of the consumable alcohol in the world (ethanol) is produced by fermentation reactions carried out by yeasts. [Pg.364]

Notice that the conversion of citrate to cis-aconitate is a biological example of the dehydration of an alcohol to produce an alkene (Section 13.5). The conversion of cis-aconitate to isocitrate is a biochemical example of the hydration of an alkene to produce an alcohol (Sections 12.5 and 13.5). [Pg.665]

Oxidation of the resulting 3,5,17-triol, 24-5, leads to conversion of the only secondary alcohol in this intermediate to a ketone (Scheme 6.25). This intermediate readily dehydrates to form the conjugated ketone present in most biologically active steroids (25-1). Treatment with chloranil then extends the conjugated ketone by a new double bond in ring B. The 17-acetate, 25-2, formed by reaction with acetic anhydride under forcing conditions, is a potent progestin. [Pg.97]


See other pages where Alcohol biological dehydration is mentioned: [Pg.532]    [Pg.1634]    [Pg.23]    [Pg.104]    [Pg.199]    [Pg.237]    [Pg.364]    [Pg.145]    [Pg.123]    [Pg.218]    [Pg.411]    [Pg.242]    [Pg.242]    [Pg.407]    [Pg.179]    [Pg.44]    [Pg.301]    [Pg.24]    [Pg.237]    [Pg.52]    [Pg.254]    [Pg.271]    [Pg.254]    [Pg.1634]    [Pg.146]    [Pg.39]    [Pg.270]    [Pg.192]    [Pg.166]   
See also in sourсe #XX -- [ Pg.622 ]

See also in sourсe #XX -- [ Pg.622 ]

See also in sourсe #XX -- [ Pg.518 ]

See also in sourсe #XX -- [ Pg.643 ]




SEARCH



Alcohol, Dehydrated

Alcohols dehydration

Biological reaction, alcohol dehydration

Biological reaction, alcohol dehydration elimination reactions

© 2024 chempedia.info