Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption droplet

The droplet analogs to the adsubble methods have been termed the adsoplet methods (from adsorptive droplet separation methods) [LeiTilich, Adsorptive Bubble Separation Methods, Ind. E/ig. Chem., 60(10), 16 (1968)]. They are omitted from Fig. 22-41, since they involve adsorption or attachment at liquid-liquid interfaces. Among them are emulsion fractionation [Eldib, Foam and Emulsion Fractionation, in Kobe and McKetta (eds.). Advances in Petroleum Chemistry and Refining, vol. 7, Interscience, New York, 1963, p. 66], which is the analog of foam fractionation and droplet fractionation [Lemlich, loc. cit. and Strain, J. Phys. Chem., 57, 638... [Pg.2018]

Polymers have so far been used comparatively less than the common surfactants to stabilize emulsions in spite of the fact that excellent stabilization by them can be achieved (18—20). AppHcation probably has been limited because the adsorption of polymers to emulsion droplets has displayed some intricate phenomena small changes in polymer stmcture or in solvent properties may lead to drastic changes in adsorption. [Pg.200]

FIG. 22-38 Tbe variation of adsorption density, oil-droplet contact angle, and oil-extraction recovery of bematite as a function of pH. To convert gram-moles per square centimeter to pound-moles per square foot, multiply hy 2.048. [From Raghavan and Fuerstenau, Am. Inst. Cbem. Eng. Symp. Ser., 71(150), 59... [Pg.2015]

In cases when the two surfaces are non-equivalent (e.g., an attractive substrate on one side, an air on the other side), similar to the problem of a semi-infinite system in contact with a wall, wetting can also occur (the term dewetting appHes if the homogeneous film breaks up upon cooHng into droplets). We consider adsorption of chains only in the case where all monomers experience the same interaction energy with the surface. An important alternative case occurs for chains that are end-grafted at the walls polymer brushes which may also undergo collapse transition when the solvent quality deteriorates. Simulation of polymer brushes has been reviewed recently [9,29] and will not be considered here. [Pg.558]

The function of emulsifier in the emulsion polymerization process may be summarized as follows [45] (1) the insolubilized part of the monomer is dispersed and stabilized within the water phase in the form of fine droplets, (2) a part of monomer is taken into the micel structure by solubilization, (3) the forming latex particles are protected from the coagulation by the adsorption of monomer onto the surface of the particles, (4) the emulsifier makes it easier the solubilize the oligomeric chains within the micelles, (5) the emulsifier catalyzes the initiation reaction, and (6) it may act as a transfer agent or retarder leading to chemical binding of emulsifier molecules to the polymer. [Pg.196]

The key features of soot are its chemical inertness, its physical and chemical adsorption properties, and its light absorption. The large surface area coupled with the presence of various organic functional groups allow the adsorption of many different materials onto the surfaces of the particles. This type of sorption occurs both in the aerosol phase and in the aqueous phase once particles are captured by cloud droplets. As a result, complex chemical processes occur on the surface of soot particles, and otherwise volatile species may be scavenged by the soot particles. [Pg.148]

Condensed phase interactions can be divided roughly into two further categories chemical and physical. The latter involves all purely physical processes such as condensation of species of low volatility onto the surfaces of aerosol particles, adsorption, and absorption into liquid cloud and rainwater. Here, the interactions may be quite complex. For example, cloud droplets require a CCN, which in many instances is a particle of sulfate produced from SO2 and gas-particle conversion. If this particle is strongly acidic (as is often the case) HNO3 will not deposit on the aerosol particle rather, it will be dissolved in liquid water in clouds and rain. Thus, even though HNO3 is not very soluble in... [Pg.150]

Desulfurization processes are absolutely necessary for producing clean fuels. Possible strategies to realize ultradeep suffiirization currently include adsorption, extraction, oxidation, and bioprocesses. Oxidative desulfurization (ODS) combined with extraction is considered one of the most promising of these processes [13]. Ultradeep desulfurization of diesel by selective oxidation with amphiphilic catalyst assembled in emulsion droplets has given results where the sulfur level of desulfurized diesel can be lowered from 500 ppm to about 0.1 ppm without changing the properties of the diesel [12]. [Pg.146]

Of special interest in liquid dispersions are the surface-active agents that tend to accumulate at air/ liquid, liquid/liquid, and/or solid/liquid interfaces. Surfactants can arrange themselves to form a coherent film surrounding the dispersed droplets (in emulsions) or suspended particles (in suspensions). This process is an oriented physical adsorption. Adsorption at the interface tends to increase with increasing thermodynamic activity of the surfactant in solution until a complete monolayer is formed at the interface or until the active sites are saturated with surfactant molecules. Also, a multilayer of adsorbed surfactant molecules may occur, resulting in more complex adsorption isotherms. [Pg.250]

Both models apply the same chemical scheme of mercury transformations. It is assumed that mercury occurs in the atmosphere in two gaseous forms—gaseous elemental HgO, gaseous oxidized Hg(II) particulate oxidized Hgpart, and four aqueous forms—elemental dissolved HgO dis, mercury ion Hg2+, sulphite complex Hg(S03)2, and aggregate chloride complexes HgnClm. Physical and chemical transformations include dissolution of HgO in cloud droplets, gas-phase and aqueous-phase oxidation by ozone and chlorine, aqueous-phase formation of chloride complexes, reactions of Hg2+ reduction through the decomposition of sulphite complex, and adsorption by soot particles in droplet water. [Pg.365]


See other pages where Adsorption droplet is mentioned: [Pg.506]    [Pg.506]    [Pg.278]    [Pg.401]    [Pg.466]    [Pg.49]    [Pg.200]    [Pg.2149]    [Pg.289]    [Pg.413]    [Pg.85]    [Pg.134]    [Pg.155]    [Pg.254]    [Pg.280]    [Pg.266]    [Pg.328]    [Pg.272]    [Pg.481]    [Pg.446]    [Pg.111]    [Pg.62]    [Pg.261]    [Pg.145]    [Pg.700]    [Pg.159]    [Pg.162]    [Pg.396]    [Pg.66]    [Pg.77]    [Pg.79]    [Pg.136]   
See also in sourсe #XX -- [ Pg.158 , Pg.185 , Pg.186 ]




SEARCH



© 2024 chempedia.info