Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbents interlayered clays

New Adsorbent Materials. SihcaUte and other hydrophobic molecular sieves, the new family of AlPO molecular sieves, and steadily increasing families of other new molecular sieves (including stmctures with much larger pores than those now commercially available), as well as new carbon molecular sieves and pillared interlayer clays (PILCS), will become more available for commercial appHcations, including adsorption. Adsorbents with enhanced performance, both highly selective physical adsorbents and easily regenerated, weak chemisorbents will be developed, as will new rate-selective adsorbents. [Pg.287]

Pillared interlayered clays (PILCs), nanostructured adsorbents, 120 Platinum, dendrimers, 14-15 Polarizability... [Pg.213]

Soils and clays, in general, when calcined give off adsorbed, interlayer, and hydrated types of water. These effects produce endothermal peaks or loss of weight in DTA and TG, respectively. The endothermal peaks are followed by exothermal peaks that are caused by re-crystalliza-tion. Although many types of clay minerals such as montmorillonite, illite, and some shales show these effects, they are not suitable as pozzolans in concrete. Metakaolin, formed by heating kaolinite, seems to be the most suitable additive material for cement. Heating of kaolinite involves removal of adsorbed water at about 100°C and dehydroxylation at above 600°C, followed by the formation of metakaolinite, an almost amorphous product. The sequence of reactions is as follows ... [Pg.323]

Halloysite-10A represents a structure with few if any interlayer cations, allowing one to investigate the relatively simple case of water interacting with a clay surface. Similarly, ice-like models have been proposed for water adsorbed on smectite and vermie-ulite surfaces (2, 12, 12). These represent cases of charged clay layers with adsorbed exchangeable cations. [Pg.41]

In general, the 2 1 clays are not very simple systems in which to study the interaction of water and surfaces. They have complex and variable compositions and their structures are poorly understood. Water occurs in several different environments zeolitic water in the interlayer regions, water adsorbed on the external surfaces of the crystallites, water coordinating the exchangeable cations, and, often, as pore water filling voids between the crystallites. Thus, there are many variables and the effects of each on the properties of water are difficult to separate. [Pg.43]

Subsequent work showed that a modification of the synthesis procedure produced a 10A hydrate which> if dried carefully, would maintain the interlayer water in the absence of excess water (27). This material is optimal for adsorbed water studies for a number of reasons the parent clay is a well-crystallized kaolinite with a negligible layer charge, there are few if any interlayer cations, there is no interference from pore water since the amount is minimal, and the interlayer water molecules lie between uniform layers of known structure. Thus, the hydrate provides a useful model for studying the effects of a silicate surface on interlayer water. [Pg.45]

Our approach has been to study a very simple clay-water system in which the majority of the water present is adsorbed on the clay surfaces. By appropriate chemical treatment, the clay mineral kao-linite will expand and incorporate water molecules between the layers, yielding an effective surface area of approximately 1000 m2 g . Synthetic kaolinite hydrates have several advantages compared to the expanding clays, the smectites and vermiculites they have very few impurity ions in their structure, few, if any, interlayer cations, the structure of the surfaces is reasonably well known, and the majority of the water present is directly adsorbed on the kaolinite surfaces. [Pg.51]

ESR has also been used in the characterization of species adsorbed on pillared clays, i.e. smectites with hydroxy-aluminium interlayers. Adsorption of Cu(II) on hydroxy-aluminium hectorite produced mobile hexaaquacopper(II) and Cu(II) chemisorbed to... [Pg.351]

By comparison with many other silicate minerals, isotope studies of natural clays are complicated by a number of special problems related to their small particle size and, hence, much larger specific surface area and the presence of interlayer water in certain clays. Surfaces of clays are characterized by 1 or 2 layers of adsorbed water. Savin and Epstein (1970a) demonstrated that adsorbed and interlayer water can exchange its isotopes with atmospheric water vapor in hours. Complete removal of interlayer water for analysis with the total absence of isotopic exchange between it and the hydroxyl group, may not be possible in all instances (Lawrence and Taylor 1971). [Pg.192]

Clay Minerals. The clay minerals in coal all contain water bound within their lattices. Kaolinite contains 13.96%, illite 4.5%, and mont-morillonite 5% bound water. In addition, the montmorillonite in the mixed-layer clays also contains interlayer or adsorbed water. All of the water is lost during the high-temperature ashing. [Pg.13]


See other pages where Adsorbents interlayered clays is mentioned: [Pg.119]    [Pg.130]    [Pg.587]    [Pg.318]    [Pg.120]    [Pg.548]    [Pg.111]    [Pg.150]    [Pg.54]    [Pg.180]    [Pg.157]    [Pg.157]    [Pg.161]    [Pg.656]    [Pg.657]    [Pg.454]    [Pg.456]    [Pg.95]    [Pg.97]    [Pg.437]    [Pg.40]    [Pg.350]    [Pg.376]    [Pg.387]    [Pg.469]    [Pg.471]    [Pg.194]    [Pg.81]    [Pg.84]    [Pg.194]    [Pg.426]    [Pg.81]    [Pg.523]    [Pg.130]    [Pg.20]    [Pg.43]    [Pg.100]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Clay adsorbent

Clay, adsorbability

Interlayered clays

Interlayering

© 2024 chempedia.info