Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Termolecular addition

Such mechanisms are called Ad3 (addition-termolecular). Ad3 transition states analogous to 12 and 13 but leading to syn adductsHare, precluded by the steric requirements of the addends.22 Thus increased chloride ion concentration in-creases the contribution of the second term of the rate equation relative to the other two, and an/z-HCl adduct is formed more rapidly than jyn-HCl or -HOAc adducts. [Pg.344]

The three basic mechanisms that have been considered to be involved in electrophilic additions to alkynes are shown below. The first involves a discrete vinyl cation. In general, it can lead to either of the two stereoisomeric addition products. The second mechanism is a termolecular process which would be expected to lead to stereospecific anti addition. The... [Pg.371]

Swain and Eddy have queried the wide applicability of the S l and Sif2 mechanisms and favored a push-pull termolecular process for the reaction of pyridine with methyl bromide in benzene solution for example, they have suggested that the effects observed on the addition of methanol, phenol, p-nitrophenol, and mercuric bromide to the reaction mixture can be explained by an intermediate of type 168. ... [Pg.54]

Type 125 0x0 forms are characteristic for 5-hydroxy-l,2,4-triazoles [76AHC(S1), pp. 379, 388], These forms are additionally stabilized by an electron-withdrawing substituent, R = NO2 (98MRC343). Both hydroxy and 0x0 tautomers are capable of forming stable dimers owing to the in-termolecular hydrogen bonds (126 and 127 [76AHC(S1), pp. 377,379). [Pg.224]

This mechanism, called the AdnS mechanism (termolecular addition, lUPAC AnAe)," has the disadvantage that three molecules must come together in the transition state. However, it is the reverse of the E2 mechanism for elimination, for which the transition state is known to possess this geometry (p. 1300). [Pg.972]

In contrast to the behavior of 3-hexyne in trifluoroacetic acid, addition of HCl in acetic acid yields essentially rra s-3-chloro-3-hexene (48%) and 3-hexanone (52%) as products, with less than 1% of the cis chloride (31,42,43). The 3-hexanone has been shown to arise from an intermediate vinyl acetate. The kinetics are complicated, but they seem to be of first order in substrate and second order in HCl. Added tetramethylammonium chloride increases the rate of product formation and changes the product composition to >95% trans-3-chloro-3-hexene and <5% 3-hexanone. A termolecular electrophilic addition via an intermediate such as 14 has been proposed (31,42) to account for these data. [Pg.216]

The stereochemistry of addition depends on the details of the mechanism. The addition can proceed through an ion pair intermediate formed by an initial protonation step. Most alkenes, however, react via a complex that involves the alkene, hydrogen halide, and a third species that delivers the nucleophilic halide. This termolecular mechanism is generally pictured as a nucleophilic attack on an alkene-hydrogen halide complex. This mechanism bypasses a discrete carbocation and exhibits a preference for anti addition. [Pg.292]

Figure 23. Plot of experimental ( ) and theoretical three-body rate constants as a function of cluster size for the clustering of one CO molecule to copper clusters, Cun. Note the dramatic increase in reactivity (almost four orders of magnitude) within the first seven atom additions to the clusters. The overall trend represents a transition from termolecular to effective bimolecular behavior. The solid line (theory) was obtained assuming a loose transition state while the dotted line shows the results for a tight transition state for monomer and dimer only (upper limit). Taken with permission from ref. 155. Figure 23. Plot of experimental ( ) and theoretical three-body rate constants as a function of cluster size for the clustering of one CO molecule to copper clusters, Cun. Note the dramatic increase in reactivity (almost four orders of magnitude) within the first seven atom additions to the clusters. The overall trend represents a transition from termolecular to effective bimolecular behavior. The solid line (theory) was obtained assuming a loose transition state while the dotted line shows the results for a tight transition state for monomer and dimer only (upper limit). Taken with permission from ref. 155.
In addition to the assumptions implicit in the use of the Langmuir isotherm the following assumption is applicable to all Hougen-Watson models the reaction involves at least one species chemisorbed on the catalyst surface. If reaction takes place between two adsorbed species, they must be adsorbed on neighboring sites in order for reaction to occur. The probability of reaction between adsorbed A and adsorbed B is assumed to be proportional to the product of the fractions of the sites occupied by each species (0A9B). Similar considerations apply to termolecular reactions occurring on the surface. [Pg.182]

A tandem enolate-arylation-allylic cyclisation, in which an essential z-butyldimethylsilyl ether protecting group delays the cyclisation step until the Pd-catalysed arylation is complete, enables 1-vinyl-l//-[2]benzopyrans 54 to be prepared from 2-bromobenzaldehyde (Scheme 32) <00CC1675>. 4-Substituted isochromans 55 are formed from aldehydes by a Pd-catalysed termolecular queuing cascade. The sequence involves cyclisation of an aryl iodide onto a proximate alkyne followed by an allene insertion. Transmetallation with indium then allows addition to the aldehyde (Scheme 33) . [Pg.326]

The Diels-Alder reaction outlined above is a typical example of the utilization of axially chiral allenes, accessible through 1,6-addition or other methods, to generate selectively new stereogenic centers. This transfer of chirality is also possible via in-termolecular Diels-Alder reactions of vinylallenes [57], aldol reactions of allenyl eno-lates [19f] and Ireland-Claisen rearrangements of silyl allenylketene acetals [58]. Furthermore, it has been utilized recently in the diastereoselective oxidation of titanium allenyl enolates (formed by deprotonation of /3-allenecarboxylates of type 65 and transmetalation with titanocene dichloride) with dimethyl dioxirane (DMDO) [25, 59] and in subsequent acid- or gold-catalyzed cycloisomerization reactions of a-hydroxyallenes into 2,5-dihydrofurans (cf. Chapter 15) [25, 59, 60],... [Pg.67]

The major factor in determining which mechanism is followed is the stability of the carbocation intermediate. Alkenes that can give rise to a particularly stable carbocation are likely to react via the ion-pair mechanism. The ion-pair mechanism would not be expected to be stereospecific, because the carbocation intermediate permits loss of stereochemistry relative to the reactant alkene. It might be expected that the ion-pair mechanism would lead to a preference for syn addition, since at the instant of formation of the ion pair, the halide is on the same side of the alkene as the proton being added. Rapid collapse of the ion-pair intermediate leads to syn addition. If the lifetime of the ion pair is longer and the ion pair dissociates, a mixture of syn and anti addition products is formed. The termolecular mechanism is expected to give anti addition. Attack by the nucleophile occurs at the opposite side of the double bond from proton addition. [Pg.194]

As indicated by the involvement of water vapor and an inert third body, this reaction has several channels (see DeMore et al., 1997, for a review). There is both a bimolecular channel, which is pressure independent, and a termolecular channel, which is pressure dependent. In addition, the rate constant increases in the presence of gaseous water, suggesting that the reaction proceeds through a mechanism such as... [Pg.235]

The 1997 recommendations for the OH + N02 rate constants (DeMore et al., 1997 Atkinson et al., 1997a, 1997b) may be systematically high (e.g., Donahue et al., 1997) at temperatures below 240 K. Thus, recent measurements at temperatures characteristic of the upper troposphere give rate constants that are smaller than the recommendations by 10-30% (Brown et al., 1999a Dransfield et al., 1999). In addition, 02 appears to be only about 70% as efficient a third body as N2 in the termolecular reaction. Using a modified form of the semiempirical equation for the rate constant in the falloff region (Chapter 5, Eq. (C)), which takes into account the variable collision efficiency /3,... [Pg.267]

SCHEME 2. A termolecular mechanism for Grignard reagent addition to carbonyl compounds via... [Pg.371]

The case for a two-step mechanism for the Aac2 reaction involving a tetrahedral addition intermediate, has already been discussed (p. 104), and has been widely accepted. It is not possible, however, to exclude completely the possibility that a concerted nucleophilic displacement is involved, and it is possible to write such mechanisms involving transition states of lhe correct composition. All such mechanisms necessarily involve a termolecular collision and are therefore not readily reconciled with the observed entropies of activation. [Pg.118]

With termolecular reactions the position is quite different. An appropriate ternary collision is an event of such rarity that, if in addition to a molecular encounter considerable activation is required, the velocity of reaction will be negligibly small. Conversely, it may be anticipated that if any termolecular gaseous reactions are observed to take place with measurable speed at ordinary pressures, they must be associated with, a very small heat of activation. These theoretical anticipations are confirmed by experiment. [Pg.119]

The chemical conversion is not without some difficulty because the reagent NO also reacts with the product Cl to form C1NO. In the lower stratosphere, this termolecular reaction is about 10% as fast as the forward reaction. In addition to this removal of Cl is the reaction... [Pg.180]

Schechter 55) proposed that the catalytic effect of hydroxyl groups on the epoxide-amine addition reaction involved a termolecular activated complex formed in the concerted reaction of amine, epoxide and hydroxyl. Smith 57) suggested a modified mechanism in which the same activated complex is formed in a bimolecular reaction between an adduct formed from epoxide (E) and the proton donor (HX), and the amine ... [Pg.123]

Additional experimental investigations and theoretical treatments of collisional deactivation processes have recently been reported from several laboratories,250 253 Temperature effects on the lifetimes of intermediate adducts formed in the 0 -C02 interaction and in other relatively simple processes have been examined by Meisels and co-workers.252 254 Here the theoretical treatment involves application of a modified RRKM approach to the unimolecular dissociation of the adduct and/or of the termolecular collision complex consisting of the adduct plus the deactivating species M,. [Pg.151]

The reaction exhibits a very large cross section at thermal energies,440 approaching the theoretical gas kinetic collisions limit (see Table V) and has an additional contribution from a termolecular component170 at high helium pressures. [Pg.190]

Electrophilic addition of HC1 to triple bonds can apparently also go by bi-or termolecular mechanisms. Thus in acetic acid 3-hexyne (14) gives predominantly anti addition through an Ad3 pathway, but 1-phenylpropyne (15), which can form the resonance-stabilized vinyl cation (16), gives predominantly syn addition through an ion pair Ad 2 mechanism.27... [Pg.345]

The key features of both catalytic cycles are similar. Alkene coordination to the metal followed by insertion to yield an alkyl-metal complex and CO insertion to yield an acyl-metal complex are common to both catalytic cycles. The oxidative addition of hydrogen followed by reductive elimination of the aldehyde regenerates the catalyst (Scheme 2 and middle section of Scheme 1). The most distinct departure in the catalytic cycle for cobalt is the alternate possibility of a dinuclear elimination occurring by the in-termolecular reaction of the acylcobalt intermediate with hydridotetracarbonylcobalt to generate the aldehyde and the cobalt(0) dimer.11,12 In the cobalt catalytic cycle, therefore, the valence charges can be from +1 to 0 or +1 to +3, while the valence charges in the rhodium cycles are from +1 to +3. [Pg.915]

Ashby et al.1, , however, suggest that the addition of methylmagnesium bromide to benzophenone, again in solvent ether, proceeds by a termolecular mechanism, written as... [Pg.195]


See other pages where Termolecular addition is mentioned: [Pg.378]    [Pg.352]    [Pg.293]    [Pg.637]    [Pg.221]    [Pg.189]    [Pg.104]    [Pg.58]    [Pg.538]    [Pg.226]    [Pg.255]    [Pg.446]    [Pg.121]    [Pg.138]    [Pg.279]    [Pg.371]    [Pg.371]    [Pg.208]    [Pg.385]    [Pg.5]    [Pg.430]    [Pg.1143]   
See also in sourсe #XX -- [ Pg.972 ]




SEARCH



Termolecular

Termolecular addition mechanism

Termolecular addition, with alkenes

© 2024 chempedia.info