Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions metal-mediated

Barbier coupling reaction Metal-mediated addition of alkyl, allyl or benzyl halides to carbonyl compounds. 38... [Pg.513]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

Among all the nucleophilic addition reactions of carbonyl compounds, allylation reaction has been the most successful, partly due to the relatively high reactivity of allyl halides. Various metals have been found to be effective in mediating such a reaction (Scheme 8.4). Among them, indium has emerged as the most popular metal for such a reaction. [Pg.225]

Mediated by Tin. In 1983, Nokami et al. observed an acceleration of the reaction rate during the allylation of carbonyl compounds with diallyltin dibromide in ether through the addition of water to the reaction mixture.74 In one case, by the use of a 1 1 mixture of ether/water as solvent, benzaldehyde was allylated in 75% yield in 1.5 h, while the same reaction gave only less than 50% yield in a variety of other organic solvents such as ether, benzene, or ethyl acetate, even after a reaction time of 10 h. The reaction was equally successful with a combination of allyl bromide, tin metal, and a catalytic amount of hydrobromic acid. In the latter case, the addition of metallic aluminum powder or foil to the reaction mixture dramatically improved the yield of the product. The use of allyl chloride for such a reaction,... [Pg.229]

Transition metal centered bond activation reactions for obvious reasons require metal complexes ML, with an electron count below 18 ("electronic unsaturation") and with at least one open coordination site. Reactive 16-electron intermediates are often formed in situ by some form of (thermal, photochemical, electrochemical, etc.) ligand dissociation process, allowing a potential substrate to enter the coordination sphere and to become subject to a metal mediated transformation. The term "bond activation" as often here simply refers to an oxidative addition of a C-X bond to the metal atom as displayed for I and 2 in Scheme 1. [Pg.232]

Although transition metal-mediated P-H addition across ordinary alkenes proceeds well only with five-membered cyclic hydrogen phosphonates, addition across the olefinic linkage of a,P-unsaturated compounds occurs readily with a range of phosphorus species and catalytic agents. Of particular note are the reaction systems involving platinum,96-107 palladium,108-115 and the lanthanides.116-122... [Pg.127]

C-C Bond Formation (Part 1) by Addition Reactions through Carbometallation Mediated by Group 4-7 Metals ... [Pg.251]

Thus, a highly reactive species is needed to make this type of bond activation reaction feasible under mild conditions. In addition, to be useful, the C-H bond activation must occur with both high chemo- and regiose-lectivity. Over the past several decades, it has been shown that transition metal complexes are able to carry out alkane activation reactions (1-5). Many of these metal-mediated reactions operate under mild to moderate conditions and exhibit the desirable chemoselectivity and regioselectiv-ity. Thus, using transition metal complexes, alkane activation can be preferred over product activation, and the terminal positions of alkanes, which actually contain the stronger C-H bonds, can be selectively activated. The fact that a hydrocarbon C-H bond has been broken in a... [Pg.260]

Copper has long played a dominant role in stoichiometric organometallic reactions in synthesis. Organocuprate mediated conjugate addition reactions are a cornerstone of carbon-carbon bond-forming reactions. Its preeminence has not been overlooked in the search for asymmetric versions of the reaction (134-136). However, the requirement for stoichiometric amounts of the metal has dampened efforts to introduce chirality into this process. [Pg.70]

The reaction of trialkylboranes with 1,4-benzoquinones to give in quantitative yield 2-alkylhydroquinones was the first reaction of this type occurring without the assistance of a metal mediator [81,82], An ionic mechanism was originally proposed but rapidly refuted since the reaction is inhibited by radical scavengers such as galvinoxyl and iodine [83]. This procedure is in many cases superior to the more widely use organometallic additions. For instance, when primary and secondary alkyl radicals have been used and afford the addition products in high yield (Scheme 33) [84],... [Pg.99]

Abstract The transition metal mediated conversion of alkynes, alkenes, and carbon monoxide in a formal [2 + 2+1] cycloaddition process, commonly known as the Pauson-Khand reaction (PKR), is an elegant method for the construction of cyclopentenone scaffolds. During the last decade, significant improvements have been achieved in this area. For instance, catalytic PKR variants are nowadays possible with different metal sources. In addition, new asymmetric approaches were established and the reaction has been applied as a key step in various total syntheses. Recent work has also focused on the development of CO-free conditions, incorporating transfer carbonylation reactions. This review attempts to cover the most important developments in this area. [Pg.172]

The detailed mechanism for these Co AlPO-18- and Mn ALPO-18-cata-lyzed oxidations are unknown, but as previously pointed out vide supra) and by analogy to other metal-mediated oxidations a free-radical chain auto-oxidation (a type IIaRH reaction) is anticipated [63], This speculation is supported by several experimental observations that include (1) an induction period for product formation in the oxidation of n-hexane in CoAlPO-36, (2) the reduction of the induction period by the addition of free-radical initiators, (3) the ability to inhibit the reaction with addition of free-radical scavengers, and (4) the direct observation of cyclohexyl hydroperoxide in the oxidation of cyclohexane [62],... [Pg.300]

Another rhodium vinylidene-mediated reaction for the preparation of substituted naphthalenes was discovered by Dankwardt in the course of studies on 6-endo-dig cyclizations ofenynes [6]. The majority ofhis substrates (not shown), including those bearing internal alkynes, reacted via a typical cationic cycloisomerization mechanism in the presence of alkynophilic metal complexes. In the case of silylalkynes, however, the use of [Rh(CO)2Cl]2 as a catalyst unexpectedly led to the formation of predominantly 4-silyl-l-silyloxy naphthalenes (12, Scheme 9.3). Clearly, a distinct mechanism is operative. The author s proposed catalytic cycle involves the formation of Rh(I) vinylidene intermediate 14 via 1,2-silyl-migration. A nucleophilic addition reaction is thought to occur between the enol-ether and the electrophilic vinylidene a-position of 14. Subsequent H-migration would be expected to provide the observed product. Formally a 67t-electrocyclization process, this type of reaction is promoted by W(0)-and Ru(II)-catalysts (Chapters 5 and 6). [Pg.282]

CEJ1358> and the ruthenium mediated isomerization of double bonds (cf. Scheme 89, Section 8.11.7) <2007TL137> are recent examples of transition metal catalyzed manipulations at the side chain carbon atoms of 1,3-heterocycles. A novel side-chain addition reaction of aldehydes to 6-alkylidene-l,3-dioxin-4-ones was used for the construction of intermediates of lophotoxin <2006CJC1226>. An acid-catalyzed intramolecular cycloaddition of a hydroxy group to an alkene has been effected by the presence of an adjacent 1,3-dithiane moiety <2006TL4549>. [Pg.838]


See other pages where Addition reactions metal-mediated is mentioned: [Pg.121]    [Pg.1191]    [Pg.98]    [Pg.399]    [Pg.399]    [Pg.399]    [Pg.113]    [Pg.171]    [Pg.106]    [Pg.18]    [Pg.252]    [Pg.52]    [Pg.164]    [Pg.686]    [Pg.540]    [Pg.120]    [Pg.160]    [Pg.422]    [Pg.557]    [Pg.664]    [Pg.73]    [Pg.101]    [Pg.1032]    [Pg.163]    [Pg.79]    [Pg.184]    [Pg.412]    [Pg.171]    [Pg.171]    [Pg.79]    [Pg.887]    [Pg.413]    [Pg.302]   


SEARCH



Mediation reaction

Metal additives

Metal mediated

Metal-mediated conjugate addition reactions

Metal-mediated reactions

Metallation addition reactions

Metals addition

© 2024 chempedia.info