Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene acylation acyl chlorides

Bromopentacarbonylrhenium(I) [ReBr(CO)5] promotes the Friedel-Crafts acylation of arenes with acyl chlorides. Toluene rmdergoes benzoy-lation with BC in the presence of the rhenium-based catalyst (0.1% mol), affording a mixture of ortho-, meta-, and para-methylbenzophenones in 91% yield (11 4 85 molar ratio). The yield decreases to 72% when using the same catalyst in a lower amount (0.01% mol). The process can be applied to different acyl chlorides, giving the corresponding ketones a satisfactory to high yield (Table 3.17). [Pg.57]

For example, when benzene is heated with methyl chloride or bromide in the presence of the catalyst anhydrous aluminum chloride, toluene, CHj.C Hj (i.e. methyl benzene) is obtained. The catalyst acts as an electron acceptor for a lone pair on the chlorine atom. This polarises the haloalkane or acyl group. [Pg.97]

Partial rate factors may be used to estimate product distributions in disubstituted benzene derivatives The reactivity of a particular position in o bromotoluene for example is given by the product of the partial rate factors for the corresponding position in toluene and bromobenzene On the basis of the partial rate factor data given here for Fnedel-Crafts acylation predict the major product of the reaction of o bromotoluene with acetyl chlonde and aluminum chloride... [Pg.517]

The reaction of alcohols with acyl chlorides is analogous to their reaction with p toluenesulfonyl chloride described earlier (Section 8 14 and Table 15 2) In those reactions a p toluene sulfonate ester was formed by displacement of chloride from the sulfonyl group by the oxygen of the alcohol Carboxylic esters arise by displacement of chlonde from a carbonyl group by the alcohol oxygen... [Pg.640]

Acylation. Reaction conditions employed to acylate an aminophenol (using acetic anhydride in alkaU or pyridine, acetyl chloride and pyridine in toluene, or ketene in ethanol) usually lead to involvement of the amino function. If an excess of reagent is used, however, especially with 2-aminophenol, 0,A/-diacylated products are formed. Aminophenol carboxylates (0-acylated aminophenols) normally are prepared by the reduction of the corresponding nitrophenyl carboxylates, which is of particular importance with the 4-aminophenol derivatives. A migration of the acyl group from the O to the N position is known to occur for some 2- and 4-aminophenol acylated products. Whereas ethyl 4-aminophenyl carbonate is relatively stable in dilute acid, the 2-derivative has been shown to rearrange slowly to give ethyl 2-hydroxyphenyl carbamate [35580-89-3] (26). [Pg.310]

Triflates of aluminum, gallium and boron, which are readily available by the reaction of the corresponding chlorides with triflic acid, are effective Fnedel-Crafis catalysis for alkylation and acylation of aromatic compounds [119, 120] Thus alkylation of toluene with various alkyl halides m the presence of these catalysts proceeds rapidly at room temperature 111 methylene chloride or ni-tromethane Favorable properties of the triflates in comparison with the correspond mg fluorides or chlorides are considerably decreased volatility and higher catalytic activity [120]... [Pg.964]

The aromatic sulfonyl chlorides which have no a-hydrogen and thus cannot form sulfenes give acylic sulfones. Thus 1-piperidinopropene on reaction with benzene sulfonyl chloride (9J) gave 2-benzenesulfonyl-l-piperidinopropene (153). Similarly the enamine (28) reacts with p-toluene-sulfonyl chloride to give the 2-p-toluenesulfonylcyclohexanone (154) on hydrolysis (/OS). [Pg.148]

Acylation of 3-arylamino-4-arylimino-4//-pyrido[l,2-u]pyrazines (373) with acyl chlorides afforded mixtures of mono- and bisacylated derivatives 374 and 375 (99JPR332). Acetyl chloride gave only monoacylated product 374 (R = 4-MePh, R =Me). Bis-acylated derivative 375 (R = 4-MePh, r = Me) was obtained in 68% yield in boiling toluene. Reaction of 373 with dienophiles 376 and 377 gave 4-thiono and 4-seleno derivatives of 4//-pyrido[l,2-u]pyrazines 378 (Y==S, Se) and 4-imino-4//-pyrido[l,2-u]pyrazines 379, respectively (99JPR332). [Pg.310]

Olivier and Berger335, who measured the first-order rate coefficients for the aluminium chloride-catalysed reaction of 4-nitroben2yl chloride with excess aromatic (solvent) at 30 °C and obtained the rate coefficients (lO5/ ) PhCI, 1.40 PhH, 7.50 PhMe, 17.5. These results demonstrated the electrophilic nature of the reaction and also the unselective nature of the electrophile which has been confirmed many times since. That the electrophile in these reactions is not the simple and intuitively expected free carbonium ion was indicated by the observation by Calloway that the reactivity of alkyl halides was in the order RF > RC1 > RBr > RI, which is the reverse of that for acylation by acyl halides336. The low selectivity (and high steric hindrance) of the reaction was further demonstrated by Condon337 who measured the relative rates at 40 °C, by the competition method, of isopropylation of toluene and isopropylbenzene with propene catalyzed by boron trifluoride etherate (or aluminium chloride) these were as follows PhMe, 2.09 (1.10) PhEt, 1.73 (1.81) Ph-iPr, (1.69) Ph-tBu, 1.23 (1.40). The isomer distribution in the reactions337,338 yielded partial rate factors of 2.37 /mMe, 1.80 /pMe, 4.72 /, 0.35 / , 2.2 / Pr, 2.55337 339. [Pg.140]

The first significant kinetic study of acylation was that of Steele333, who measured rates of benzoylation of toluene (excess) by benzoyl chloride catalysed... [Pg.166]

Microwave irradiation has been used to accelerate the Gewald reaction for the one-pot synthesis of N-acyl aminothiophenes on solid support [67]. A suspension of cyanoacetic acid Wang resin 35, elemental sulfur, DBU and an aldehyde or ketone 36 in toluene was irradiated for 20 min at 120 °C in a single-mode microwave synthesizer (Scheme 13). Acyl chloride 37 was added, followed by DIPEA, and the mixture was irradiated for 10 min at 100 °C. After cooling to room temperature, the washed resin was treated with a TEA solution to give M-acylated thiophenes 38 in 81-99% yield and purities ranging from 46-99%. [Pg.42]

Chloroacylation of terminal aryl, alkyl or alkenyl alkynes [Le. the addition of RC(=0)-C1 across the CC triple bond] with aromatic acyl chlorides was catalysed by [IrCl(cod)(lPr)] (5 mol%) in good conversions (70-94%) in toluene (90°C, 20 h). Z-addition products were observed only, hitemal alkynes were umeactive. Surprisingly, a phosphine/[lr(p-Cl)(l,5-cod)]2 system under the same conditions provides decarbonylation products (Scheme 2.34) [117]. [Pg.57]

Another example has been provided by Ito et al., who described the use of methanofullerene derivatives as powerful and stable precursors for glycofullerenes.217 Their study was based on the use of [60]fullerenoacetyl chloride (227), obtained from the ferf-butyl [60]fullerenoacetate derivative 226, which had been prepared in 56% yield by treatment of corresponding stabilized sulfonium ylides 225 with C6o-218 Subsequent transformation with p-TsOH in toluene gave [60]full-erenoacetic acid, which was directly converted into the corresponding acyl chloride 227 by using thionyl chloride. Standard ester formation with methyl 2,3,4-tetra-O-benzyI -/<-d-gl ucopyranoside (228) and 4-(dimethylamino)pyridine (DMAP) afforded the desired hybrid derivative 229 in 66% yield. [Pg.244]

A remarkable inertness towards acylation is shown by the secondary hydroxyl group on C-3 in maltose, lactose, and their methyl j8-glycosides. Benzoylation of maltose with 10 molar equivalents of the acid chloride in pyridine gave122 the octabenzoate and the l,2,6,2, 3, 4, 6 -hepta-0-benzoyl derivative in the ratio of 5 6, and treatment of /3-maltose monohydrate with 8.8 molar equivalents of acetyl chloride in pyridine-toluene at 0° gave123 the 1,2,6,2, 3, 4, 6 -heptaacetate and the octaacetate in the ratio of 27 10. Under similar conditions of benzoylation, cellobiose was converted into its oc-... [Pg.36]

The 1,3,2-dioxastannolanes are important in organic synthesis because they can readily be derived from dialkyltin oxide and 1,2-diols, as in carbohydrates the reaction can be carried out in toluene in a few minutes under microwave irradiation.387 The dioxastannolanes can then be subjected to regioselective reaction with an electrophile such as an acyl chloride (Equation (140)) or sulfonyl chloride, or an isocyanate. The acylation or sulfonation can be carried out with catalytic amounts of the dialkyltin oxide, including the recoverable (C6F13CH2CH2)2Sn0.388... [Pg.852]

Mechanistic aspects of the reduction of benzyl halides at mercury have been extensively investigated [35, 38]. From the reduction of benzyl iodide at platinum, Koch and coworkers [39] obtained toluene, bibenzyl, and hydrocinnamonitrile. Electrolysis of benzyl chloride in the presence of acyl chlorides can be used to synthesize alkyl benzyl ketones [40], whereas alcohols are formed by electrolysis of... [Pg.223]

Phenylacetyl chloride and hydrocin-namoyl chloride are reduced at mercury to form both acyl radicals and acyl anions as intermediates [76]. From electrolyses of phenylacetyl chloride, the products include 1,4-diphenyl-2-butene-2,3-diol diphenylac-etate, phenylacetaldehyde, toluene, 1,3-diphenylacetone, and l,4-diphenyl-2,3-butanediol, and analogous species arise from the reduction of hydrocinnamoyl chloride. Reduction of phthaloyl dichloride is a more complicated system [77] the electrolysis products are phthalide, biph-thalyl, and 3-chlorophthalide, but the latter compound undergoes further reduction to give phthalide, biphthalyl, and dihydrobi-phthalide. [Pg.225]

Seddon and coworkers studied the Friedel-Crafts acylations of toluene, chlorobenzene and anisole with acetyl chloride in [emim][Al2Cl7] and obtained excellent regioselectivities to the para isomer, Scheme 9. Similarly, the fragrance chemical, traseolide, was obtained in 99% yield as a single isomer. Scheme 10. It should be noted, however, that the question of product recovery from the reaction medium still needs to be addressed in these systems. [Pg.166]

The acylation of dibenzofuran is carried out under the usual Friedel-Crafts conditions with an acid chloride or an acid anhydride in the presence of aluminum chloride. Dibenzofuran on treatment with 2-trifluoromethane-sulfonyloxypyridine and benzoic acid in boiling trifluoroacetic acid produces the 2-benzoyl derivative in 75% yield. The species responsible for benzoyla-tion is probably a mixed anhydride of trifluoromethanesulfonic acid and benzoic acid. Dibenzofuran on treatment with 2-benzoyloxypyridine and trifluoroacetic acid also produces the 2-benzoyl compound (21%). The kinetics of the acetylation of dibenzofuran with acetyl chloride and aluminum chloride in nitroethane at 25"C have been studied. Only the 2-acetyl compound was detected by the methods used. The rate obtained is in general agreement with the studies mentioned previously. The rate of acetylation of diphenyl ether relative to toluene was 138 (+ 16), whereas that of dibenzofuran was 5.9 ( 0.3). In contrast, the benzoylation of dibenzofuran with benzoyl chloride in the presence of aluminum chloride in nitrobenzene at... [Pg.65]

Two papers describing the intramolecular ene cyclization for the preparation of C6 functionalized pteridines has appeared. Thus 4-amino-5-nitrosopyrimidines such as 249 reacted with a,/3-unsaturated acid chlorides acylating at the 6-amino group group to afford nitrosoamides 250 which on thermolysis in toluene underwent the pericyclic cyclization and subsequent loss of water to afford a mixture of the E- and Z-isomers of the 6-oxopteridine 251 in good yield <2006HCA1140, 2007HCA521>. [Pg.967]


See other pages where Toluene acylation acyl chlorides is mentioned: [Pg.725]    [Pg.557]    [Pg.413]    [Pg.261]    [Pg.585]    [Pg.310]    [Pg.312]    [Pg.167]    [Pg.172]    [Pg.175]    [Pg.101]    [Pg.122]    [Pg.725]    [Pg.135]    [Pg.136]    [Pg.137]    [Pg.138]    [Pg.161]    [Pg.168]    [Pg.402]    [Pg.152]    [Pg.144]    [Pg.434]    [Pg.40]    [Pg.72]    [Pg.12]    [Pg.100]    [Pg.605]    [Pg.33]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Acyl chlorides

Acylation acyl chlorides

Toluene acylation

© 2024 chempedia.info