Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl chlorides nucleophiles

Regioselectivity becomes important, if unsymmetric difunctional nitrogen components are used. In such cases two different reactions of the nitrogen nucleophile with the open-chain educt may be possible, one of which must be faster than the other. Hydrazone formation, for example, occurs more readily than hydrazinoLysis of an ester. In the second example, on the other hand, the amide is formed very rapidly from the acyl chloride, and only one cyclization product is observed. [Pg.149]

Acyi halides are reactive compounds and react with nucleophiles without a catalyst, but they are activated further by forming the acylpalladium intermediates, which undergo insertion and further transformations. The decarbonyla-tive reaction of acyl chlorides as pseudo-halides to form the aryipalladium is treated in Section 1,1.1.1. The reaction without decarbonylation is treated in this section. [Pg.253]

Since the exocyclic sulfur is more reactive in the ambident anion than in A-4-thiazoIine-2-thione. greater nucleophilic reactivity is to be expected. Thus a large variety of thioethers were prepared in good yields starting from alkylhalides (e.g.. Scheme 38 (54, 91, 111, 166-179). lactones (54, 160), aryl halides (54, 152. 180, 181), acyl chlorides (54. 149, 182-184). halothiazoles (54, 185-190), a-haloesters (149. 152. 177. 191-194), cyanuric chloride (151). fV.N-dimethylthiocarbamoyl chloride (151, 152. 195. 196), /3-chloroethyl ester of acrylic acid (197), (3-dimethylaminoethyl chloride (152). l,4-dichloro-2-butyne (152), 1,4-dichloro-2-butene (152), and 2-chloro-propionitrile (152). A general... [Pg.396]

IS general for nucleophilic acyl substitution and well worth remembering The range of reactivities is quite large a factor of about 10 m relative rate separates acyl chlorides from amides... [Pg.834]

Nucleophilic substitution in acyl chlorides is much faster than in alkyl chlorides... [Pg.841]

The sp hybridized carbon of an acyl chloride is less sterically hindered than the sp hybridized carbon of an alkyl chloride making an acyl chloride more open toward nude ophilic attack Also unlike the 8 2 transition state or a carbocation intermediate m an Stvfl reaction the tetrahedral intermediate m nucleophilic acyl substitution has a stable arrangement of bonds and can be formed via a lower energy transition state... [Pg.841]

Conversions of acid anhydrides to other carboxylic acid derivatives are illustrated m Table 20 2 Because a more highly stabilized carbonyl group must result m order for nucleophilic acyl substitution to be effective acid anhydrides are readily converted to carboxylic acids esters and amides but not to acyl chlorides... [Pg.842]

The first example in Table 20 2 mlroduces a new aspecl of nucleophilic acyl sub slilulion lhal applies nol only lo acid anhydrides bul also lo acyl chlorides Ihioeslers esters and amides Nucleophilic acyl subslilulions can be calalyzed by acids... [Pg.844]

Nucleophilic acyl substitutions at the ester carbonyl group are summarized m Table 20 5 on page 849 Esters are less reactive than acyl chlorides and acid anhydrides Nude ophilic acyl substitution m esters especially ester hydrolysis has been extensively mves tigated from a mechanistic perspective Indeed much of what we know concerning the general topic of nucleophilic acyl substitution comes from studies carried out on esters The following sections describe those mechanistic studies... [Pg.846]

Two molar equivalents of amine are required m the reaction with acyl chlorides and acid anhydrides one molecule of amine acts as a nucleophile the second as a Brpnsted base... [Pg.859]

The characteristic reaction of acyl chlorides acid anhydrides esters and amides is nucleophilic acyl substitution Addition of a nucleophilic reagent Nu—H to the carbonyl group leads to a tetrahedral mtermedi ate that dissociates to give the product of substitution... [Pg.874]

Section 20 4 Acyl chlorides are converted to acid anhydrides esters and amides by nucleophilic acyl substitution... [Pg.875]

Section 20 6 Acid anhydrides are less reactive toward nucleophilic acyl substitution than acyl chlorides but are useful reagents for preparing esters and amides... [Pg.875]

Nucleophilic acyl substitution (Sections 20 4 20 6 and 20 12) Acylation of am monia and amines by an acyl chloride acid anhydride or ester is an excep tionally effective method for the for mation of carbon-nitrogen bonds... [Pg.928]

Pyridine is more nucleophilic than an alcohol toward the carbonyl center of an acyl chloride. The product that results, an acylpyridinium ion, is, in turn, more reactive toward an alcohol than the original acyl chloride. The conditions required for nucleophilic catalysis therefore exist, and acylation of the alcohol by acyl chloride is faster in the presence of pyridine than in its absence. Among the evidence that supports this mechanism is spectroscopic observation of the acetylpyridinium ion. An even more effective catalyst is 4-dimeftiyIaminopyridine (DMAP), which functions in the same wsy but is more reactive because of the electron-donating dimethylamino substituent. ... [Pg.485]

There are alternatives to the addition-elimination mechanism for nucleophilic substitution of acyl chlorides. Certain acyl chlorides are known to react with alcohols by a dissociative mechanism in which acylium ions are intermediates. This mechanism is observed with aroyl halides having electron-releasing substituents. Other acyl halides show reactivity indicative of mixed or borderline mechanisms. The existence of the SnI-like dissociative mechanism reflects the relative stability of acylium ions. [Pg.486]

On treatment with the appropriate nucleophile, an acyl chloride may be converted to an acid anhydride, an ester, an amide, or a carboxylic acid. Examples are presented in Table 20.1. [Pg.838]

The first example in Table 20.2 introduces a new aspect of nucleophilic acyl substitution that applies not only to acid anhydrides but also to acyl chlorides, thioesters, esters, and amides. Nucleophilic acyl substitutions can be catalyzed by acids. [Pg.844]

From acyl chlorides (Sections 15.8 and 20.4) Alcohols react with acyl chlorides by nucleophilic acyl substitution to yield esters. These reactions are typically performed in the presence of a weak base such as pyridine. [Pg.847]

The jS-position of enamines is highly nucleophilic and may react with alkyl halides, acyl chlorides or anhydrides, or with Michael addition substrates to give carbon-carbon bonds as shown in the examples (1). [Pg.80]

We ve already studied the two most general reactions of amines—alkylation and acylation. As we saw earlier in this chapter, primary, secondary, and tertiary amines can be alkylated by reaction with a primary alkyl halide. Alkylations of primary and secondary amines are difficult to control and often give mixtures of products, but tertiary amines are cleanly alkylated to give quaternary ammonium salts. Primary and secondary (but not tertiary) amines can also be acylated by nucleophilic acyl substitution reaction with an acid chloride or an acid anhydride to yield an amide (Sections 21.4 and 21.5). Note that overacylation of the nitrogen does not occur because the amide product is much less nucleophilic and less reactive than the starting amine. [Pg.936]

Nucleophilic addition reactions of allylic tin reagents to chiral 3-substituted 3,4-dihydroisoquinolines 89 activated by acyl chlorides afford trans 1,3-disubstituted 1,2,3,4-tetrahydroisoquinolines 90 stereoselectively <95CL1003>. [Pg.239]


See other pages where Acyl chlorides nucleophiles is mentioned: [Pg.92]    [Pg.834]    [Pg.838]    [Pg.839]    [Pg.733]    [Pg.834]    [Pg.834]    [Pg.838]    [Pg.839]    [Pg.846]    [Pg.166]    [Pg.177]    [Pg.95]   
See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Acyl chlorides

Acylation acyl chlorides

Nucleophiles acylation

© 2024 chempedia.info