Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation energies substrates

The most complete discussion of the electrophilic substitution in pyrazole, which experimentally always takes place at the 4-position in both the neutral pyrazole and the cation (Section 4.04.2.1.1), is to be found in (70JCS(B)1692). The results reported in Table 2 show that for (29), (30) and (31) both tt- and total (tt cr)-electron densities predict electrophilic substitution at the 4-position, with the exception of an older publication that should be considered no further (60AJC49). More elaborate models, within the CNDO approximation, have been used by Burton and Finar (70JCS(B)1692) to study the electrophilic substitution in (29) and (31). Considering the substrate plus the properties of the attacking species (H", Cl" ), they predict the correct orientation only for perpendicular attack on a planar site. For the neutral molecule (the cation is symmetrical) the second most reactive position towards H" and Cl" is the 5-position. The activation energies (kJmoF ) relative to the 4-position are H ", C-3, 28.3 C-5, 7.13 Cr, C-3, 34.4 C-5, 16.9. [Pg.173]

Enzymes increase the rate of chemical reactions by decreasing the activation energy of the reactions. This is achieved primarily by the enzyme preferentially binding to the transition state of the substrate. Catalytic groups of the enzyme are required to achieve a specific reaction path for the conversion of substrate to product. [Pg.219]

There is, however, no direct evidence for the formation of Cl", and it is much more likely that the complex is the active electrophile. The substrate selectivity under catalyzed conditions ( t j = 160fcbenz) is lower than in uncatalyzed chlorinations, as would be expected for a more reactive electrophile. The effect of the Lewis acid is to weaken the Cl—Cl bond, which lowers the activation energy for o-complex formation. [Pg.576]

Lu and Pizzi [83] showed that lignocellulosic substrates have a distinct influence on the hardening behavior of PF-resins, whereby the activation energy of the hardening process is much lower than for the resin alone [84]. The reason is a catalytic activation of the PF-condensation by carbohydrates like crystalline and amorphous cellulose and hemicellulose. Covalent bonding between the PF-resin and the wood, especially lignin, does not play any role [84]. [Pg.1056]

It may be unsafe to carry this discussion further until more data are available. Knowledge of the activation parameters would be especially desirable in several respects. Reactivity orders involving different reagents or substrates may be markedly dependent on temperature. Thus, in Table IV both 2- and 4-chloroquinolines appear to be about equally reactive toward sodium methoxide at 86,5°. However, the activation energies differ by 3 kcal/mole (see Section VII), and the relative rates are reversed below and above that temperature. Clearly, such relative rates affect the rs-/ ro- ratios. [Pg.313]

Line No. Substrates Nucleophile (solvent) Rate constant (temp. °C) 106fc liter mole-1 sec-i Activation energy kcal mole-1 Entropy of activation cal mole-1 deg Frequency factor 1 logioA Ref. [Pg.352]

In thermodynamic terms, a spontaneous reaction AG < 0) may proceed only slowly without enzymes because of a large activation energy (EJ. Adding enzymes to the system does not change the free energy of either the substrates or products (and thus does not alter the AG of the reaction) but it does lower the activation energy and increase the rate of the reaction. [Pg.169]

A transition state is an unstable, high-energy configuration assumed by reactants in a chemical reaction on the way to making products. Enzymes can lower the activation energy required for a reaction by binding and stabilizing the transition state of the substrate. [Pg.1236]

Measured activation energies, which are not independent of temperature nor of the acid concentration, vary between 13.3 and 24.2, show a minimum at the acid concentration giving the maximum rate and these fairly low energies for such unreactive substrates are consistent with a highly reactive electrophile. [Pg.13]

The composition of body fluids remains relatively constant despite the many demands placed on the body each day. On occasion, these demands cannot be met, and electrolytes and fluids must be given in an attempt to restore equilibrium. The solutions used in the management of body fluids discussed in this chapter include blood plasma, plasma protein fractions, protein substrates, energy substrates, plasma proteins, electrolytes, and miscellaneous replacement fluids. Electrolytes are electrically charged particles (ions) that are essential for normal cell function and are involved in various metabolic activities. This chapter discusses the use of electrolytes to replace one or more electrolytes that may be lost by the body. The last section of this chapter gives a brief overview of total parenteral nutrition (TPN). [Pg.633]

The alkali promotion of CO dissociation is substrate-specific, in the sense that it has been observed only for a restricted number of substrates where CO does not dissociate on the clean surface, specifically on Na, K, Cs/Ni( 100),38,47,48 Na/Rh49 and K, Na/Al(100).43 This implies that the reactivity of the clean metal surface for CO dissociation plays a dominant role. The alkali induced increase in the heat of CO adsorption (not higher than 60 kJ/mol)50 and the decrease in the activation energy for dissociation of the molecular state (on the order of 30 kJ/mol)51 are usually not sufficient to induce dissociative adsorption of CO on surfaces which strongly favor molecular adsorption (e. g. Pd or Pt). [Pg.42]

Efficiency and selectivity are the two keywords that better outline the outstanding performances of enzymes. However, in some cases unsatisfactory stereoselectivity of enzymes can be found and, in these cases, the enantiomeric excesses of products are too low for synthetic purposes. In order to overcome this limitation, a number of techniques have been proposed to enhance the selectivity of a given biocatalyst. The net effect pursued by all these protocols is the increase of the difference in activation energy (AAG ) of the two competing diastereomeric enzyme-substrate transition state complexes (Figure 1.1). [Pg.3]

The COMPACT (computer-optimized molecular parametric analysis of chemical toxicity) procedure, developed by Lewis and co-workers [92], uses a form of discriminant analysis based on two descriptors, namely, molecular planarity and electronic activation energy (the difference between the energies of the highest occupied and lowest unoccupied molecular orbitals), which predict the potential of a compound to act as a substrate for one of the cytochromes P450. Lewis et al. [93] found 64% correct predictions for 100 compounds tested by the NTP for mutagenicity. [Pg.484]

Reactions proceed via transition states in which AGp is the activation energy. Temperature, hydrogen ion concentration, enzyme concentration, substrate concentration, and inhibitors all affect the rates of enzyme-catalyzed reactions. [Pg.70]


See other pages where Activation energies substrates is mentioned: [Pg.152]    [Pg.2502]    [Pg.32]    [Pg.20]    [Pg.2133]    [Pg.27]    [Pg.206]    [Pg.207]    [Pg.207]    [Pg.214]    [Pg.228]    [Pg.225]    [Pg.504]    [Pg.159]    [Pg.173]    [Pg.267]    [Pg.268]    [Pg.259]    [Pg.326]    [Pg.561]    [Pg.565]    [Pg.566]    [Pg.169]    [Pg.37]    [Pg.1007]    [Pg.80]    [Pg.226]    [Pg.90]    [Pg.1069]    [Pg.42]    [Pg.62]    [Pg.33]    [Pg.100]    [Pg.48]    [Pg.168]    [Pg.324]    [Pg.22]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Substrate activation

Substrate transport observed activation energies

© 2024 chempedia.info