Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actinide oxide fluorides hexavalent

Finally, some DOE sites also have stored hexavalent uranium fluoride (UFs). The approach to stabilize this compound is to calcine it to form stable uranium oxide. There is no study reported in the literature on treatment of fluorides using a CBPC matrix, but considering that fluroapatites are stable minerals, they should be applicable to stabilization of actinide compounds. [Pg.223]

Hexavalent. Uranium hexafluoride, UFe, is one of the best-studied uranium compounds in existence due to its importance for uranium isotope separation and large-scale production ( 70 000 tons per year). All of the actinide hexafluorides are extremely corrosive white (U), orange (Np), or dark brown (Pu) crystalline solids, which sublime with ease at room temperature and atmospheric pressure. The synthetic routes into the hexafluorides are given in equation (13). The volatility of the hexafluorides increases in the order Pu < Np < U in the liquid state and Pu < U < Np in the solid state. UFe is soluble in H2O, CCI4, and other chlorinated hydrocarbons, is insoluble in CS2, and decomposes in alcohols and ethers. The oxidative power of the actinide hexafluorides are in line with the transition metal hexafluorides and the order of reactivity is as follows PuFg > NpFg > UFg > MoFe > WFe. The UFe molecule can also react with metal fluorides to form UF7 and UFg. The same reactivity is not observed for the Np and Pu analogs. [Pg.28]

Dissolution of the calcium fluoride in aluminum nitrate-nitric acid oxidizes the plutonium to the tetravalent hexanitrate complex (3), while the transplutonium nuclides remain in the trivalent state. The only actinides retained by a nitrate-form anion-exchange column are thorium, neptunium, and plutonium. The uranium distribution coeflBcient under these conditions is about ten, but uranium should not be present at this point since hexavalent uranium does not carry on calcium fluoride (4). [Pg.154]

The chemistry of actinide ions is generally determined by their oxidation states. The trivalent, tetravalent and hexavalent oxidation states are strongly complexed by numerous naturally occurring ligands (carbonates, humates, hydroxide) and man-made complexants (like EDTA), moderately complexed by sulfate and fluoride, and weakly complexed by chloride (7). Under environmental conditions, most uncomplexed metal ions are sorbed on surfaces (2), but the formation of soluble complexes can impede this process. With the exception of thorium, which exists exclusively in the tetravalent oxidation state under relevant conditions, the dominant solution phase species for the early actinides are the pentavalent and hexavalent oxidation states. The transplutonium actinides exist only in the trivalent state under environmentally relevant conditions. [Pg.273]

Analytical methods based on coprecipitation techniques are used to determine the oxidation-state speciation of the light actinides, which can occur in solution in multiple oxidation states. An example of such a separation is the ability to selectively remove tri-and tetravalent actinide cations from penta- and hexavalent species by coprecipitation with lanthanide fluoride (Choppin 1985). Lanthanide fluoride eoprecipitation has been used to perform oxidation-state identification in ground-water samples (e.g., Nash et al. 1988). There are numerous other examples of the application of the coprecipitation technique to environmental samples. [Pg.200]


See other pages where Actinide oxide fluorides hexavalent is mentioned: [Pg.73]    [Pg.88]    [Pg.38]    [Pg.157]   
See also in sourсe #XX -- [ Pg.88 , Pg.89 , Pg.90 ]




SEARCH



Actinide oxide fluorides

Actinide oxides

Fluorides oxidizing

Oxide fluorides

© 2024 chempedia.info