Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actin myosin interactions, phosphorylation

The ETa receptor activates G proteins of the Gq/n and G12/i3 family. The ETB receptor stimulates G proteins of the G and Gq/11 family. In endothelial cells, activation of the ETB receptor stimulates the release of NO and prostacyclin (PGI2) via pertussis toxin-sensitive G proteins. In smooth muscle cells, the activation of ETA receptors leads to an increase of intracellular calcium via pertussis toxin-insensitive G proteins of the Gq/11 family and to an activation of Rho proteins most likely via G proteins of the Gi2/i3 family. Increase of intracellular calcium results in a calmodulin-dependent activation of the myosin light chain kinase (MLCK, Fig. 2). MLCK phosphorylates the 20 kDa myosin light chain (MLC-20), which then stimulates actin-myosin interaction of vascular smooth muscle cells resulting in vasoconstriction. Since activated Rho... [Pg.473]

Effect of protein-bound Ca TpC 4Ca antagonizes Tpl inhibition of F-actin-myosin interaction (allows F-actin activation of ATPase) Calmodulin 4Ca activates myosin light chain kinase that phosphorylates myosin p-light chain. The phosphorylated p-light chain no longer inhibits F-actin-myosin interaction (allows F-actin activation of ATPase). [Pg.572]

Figure 22.12 Regulation of actin-myosin interaction in smooth muscle via the light-chain kinase and phosphatase and effect on blood pressure. ions bind to calmodulin and the complex stimulates the conversion of inactive myosin light chain kinase (MLCK) to active MLCK which then phosphorylates the light chain. This results in activation of the cross-bridge cycle. The overall effect is vasoconstriction of the arteriole, which increases blood pressure. Figure 22.12 Regulation of actin-myosin interaction in smooth muscle via the light-chain kinase and phosphatase and effect on blood pressure. ions bind to calmodulin and the complex stimulates the conversion of inactive myosin light chain kinase (MLCK) to active MLCK which then phosphorylates the light chain. This results in activation of the cross-bridge cycle. The overall effect is vasoconstriction of the arteriole, which increases blood pressure.
Actin is present in all eukaryotic cells where it has structural and mobility functions. Most movement associated with microfilaments requires myosin. The myosin-to-actin ratio is much lower in nonmuscle cells, and myosin bundles are much smaller (10-20 molecules rather than about 500), but the interaction between myosin and actin in nonmuscle cells is generally similar to that in muscle. As in smooth muscle, myosin aggregation and activation of the actin-myosin interaction are regulated primarily by light chain phosphorylation. Myosins involved in transporting organelles along actin filaments are often activated by Ca-CaM. [Pg.478]

The regulation of actin myosin interaction by phosphorylation has been characterised in vitro, and the main process that is influenced by phosphorylation appears to be a step associated with the Pi release (Sellers et al. 1982, Sellers 1985, Greene and Sellers 1987). Increased levels of Ca and phosphorylation increase active force in muscle fibres which could be consistent with an influence of phosphorylation on the P, release reaction. By analogy with an analysis proposed for the events associated with force... [Pg.71]

Figure 49-14. Regulation of smooth muscle contraction by Ca. pL-myosin is the phosphorylated light chain of myosin L-myosin is the dephosphorylated light chain. (Adapted from Adelstein RS, Eisenberg R Regulation and kinetics of actin-myosin ATP interaction. Annu Rev Biochem 1980 49 921.)... Figure 49-14. Regulation of smooth muscle contraction by Ca. pL-myosin is the phosphorylated light chain of myosin L-myosin is the dephosphorylated light chain. (Adapted from Adelstein RS, Eisenberg R Regulation and kinetics of actin-myosin ATP interaction. Annu Rev Biochem 1980 49 921.)...
Apart from the phosphorylation theory, other regulatory mechanisms have also been suggested for smooth muscle contraction. A thin-filament protein that has been proposed as a regulatory component is caldesmon [102], Purified caldesmon is a potent inhibitor of actin-tropomyosin interaction with myosin. The mechanisms by which calcium removes this inhibition are controversial. Furthermore, phosphorylation of caldesmon by a caldesmon kinase in vitro has also been implicated in this... [Pg.82]

The two heads of smooth muscle myosin interact cooperatively. Studies with the soluble two-headed HMM fragment clearly demonstrate that, whereas the phosphorylation of the two heads by myosin light chain kinase was random, phosphorylation of both heads was required for the MgATPase activity of either head to be activated by actin (Sellers et al., 1983 Per-sechini and Hartshorne, 1981). This cooperative activation of the two heads, coupled with the random phosphorylation, meant that at 50% phosphorylation (i.e., 1 mol Pj/mol HMM) there was only 25% of the... [Pg.17]

The major relaxing transmitters are those that elevate the cAMP or cGMP concentration (Fig. 3). Adenosine stimulates the activity of cAMP kinase. The next step is not clear, but evidence has been accumulated that cAMP kinase decreases the calcium sensitivity of the contractile machinery. In vitro, cAMP kinase phosphorylated MLCK and decreased thereby the affinity of MLCK for calcium-calmodulin. However, this regulation does not occur in intact smooth muscle. Possible other substrate candidates for cAMP kinase are the heat stable protein HSP 20, (A heat stable protein of 20 kDa that is phosphorylated by cGMP kinase. It has been postulated that phospho-HSP 20 interferes with the interaction between actin and myosin allowing thereby smooth muscle relaxation without dephosphorylation of the rMLC.) Rho A and MLCP that are phosphorylated also by cGMP kinase I (Fig. 3). [Pg.1144]

Many of the biochemical and molecular events that are responsible for uterine smooth muscle contraction are the same as those that control other smooth muscle tissues (Fig. 62.1). Once uterine smooth muscle sensitivity has been augmented, actin and myosin must interact for contraction to occur. This interaction depends on the phosphorylation of the contractile proteins by the enzyme myosin light chain kinase (MLCK). This enzyme requires Ca++ and is active only when associated with calmodulin. Activation of the entire muscle contraction... [Pg.717]


See other pages where Actin myosin interactions, phosphorylation is mentioned: [Pg.296]    [Pg.62]    [Pg.40]    [Pg.525]    [Pg.576]    [Pg.82]    [Pg.296]    [Pg.576]    [Pg.171]    [Pg.475]    [Pg.182]    [Pg.87]    [Pg.283]    [Pg.284]    [Pg.316]    [Pg.342]    [Pg.57]    [Pg.69]    [Pg.6721]    [Pg.363]    [Pg.247]    [Pg.717]    [Pg.325]    [Pg.299]    [Pg.562]    [Pg.252]    [Pg.16]    [Pg.315]    [Pg.327]    [Pg.337]    [Pg.384]    [Pg.454]    [Pg.561]    [Pg.266]    [Pg.571]    [Pg.607]    [Pg.162]    [Pg.356]    [Pg.252]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Actin-myosin

Actinic

Myosin

Myosin phosphorylation

© 2024 chempedia.info