Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acroleins, 2-alkyl-3-

Aldehydes. Formaldehyde, paraformaldehyde, furfural, acrolein, alkyl aldehydes, and aryl aldehydes can be used as aldehydes, but formaldehyde is popularly used. An aqueous solution of formaldehyde is called formalin, and in almost all cases formalin is used industrially. When 1 mol of formaldehyde is dissolved in water, about 15 kcal of heat is generated. This heat generation results because methylene glycol is produced by solvation. [Pg.185]

Acrolein, acrylamide, hydroxyalkyl acrylates, and other functional derivatives can be more hazardous from a health standpoint than acryhc acid and its simple alkyl esters. Furthermore, some derivatives, such as the alkyl 2-chloroacrylates, are powerful vesicants and can cause serious eye injuries. Thus, although the hazards of acryhc acid and the normal alkyl acrylates are moderate and they can be handled safely with ordinary care to industrial hygiene, this should not be assumed to be the case for compounds with chemically different functional groups (see Industrial hygiene Plant safety Toxicology). [Pg.157]

Methylisoxazole and its homologs have been readily prepared by reaction of hydroxylamine hydrochloride with tetraalkoxypropanes (284) (63AHC(2)365), a-alkyl- 8-alkoxy-acroleins (62ZOB2961) and with a-alkyl- -dimethylaminoacroleins (60CB1208). [Pg.83]

Paint and varnish manufacturing Resin manufacturing closed reaction vessel Varnish cooldng-open or closed vessels Solvent thinning Acrolein, other aldehydes and fatty acids (odors), phthalic anhydride (sublimed) Ketones, fatty acids, formic acids, acetic acid, glycerine, acrolein, other aldehydes, phenols and terpenes from tall oils, hydrogen sulfide, alkyl sulfide, butyl mercaptan, and thiofen (odors) Olefins, branched-chain aromatics and ketones (odors), solvents Exhaust systems with scrubbers and fume burners Exhaust system with scrubbers and fume burners close-fitting hoods required for open kettles Exhaust system with fume burners... [Pg.2177]

Simple alkyl radicals such as methyl are considered to be nonnucleophilic. Methyl radicals are somewhat more reactive toward alkenes bearing electron-withdrawing substituents than towards those with electron-releasing substituents. However, much of this effect can be attributed to the stabilizing effect that these substiments have on the product radical. There is a strong correlation of reaction rate with the overall exothermicity of the reaction. Hydroxymethyl and 2-hydroxy-2-propyl radicals show nucleophilic character. The hydroxymethyl radical shows a slightly enhanced reactivity toward acrylonitrile and acrolein, but a sharply decreased reactivity toward ethyl vinyl ether. Table 12.9 gives some of the reactivity data. [Pg.701]

Alkylation of 28 with acrolein gives the bicyclic ketone (65), which can be converted to 4-cyclooctene-l-carboxylic acid by the action of base on its methiodide (55a). [Pg.128]

Trialky I boranes react rapidly with methyl vinyl ketone (and other a,j8-unsaturated ketones) to yield, after hydrolysis, methyl ketones of the indicated structure 4). The reaction with acrolein is analogous to give jS-alkylpropionaldehydes (5). The process is inefficient in that only one of the three alkyl groups of the borane is converted into product, but the rapidity and ease of carrying out the reaction may be adequate... [Pg.114]

The morpholin-4-yl substituent in 7-position behaves similarly to the ethoxy group. Compound 481 is easily prepared by double addition of benzotriazole to acrolein followed by elimination of one of the benzotriazolyl moieties induced by treatment with NaH. Lithiation of derivative 481 followed by addition to a Schiff base results in formation of diarylpyrrole 476. Lithiated product 481 is alkylated exclusively at the carbon a, in relation to the benzotriazolyl substituent, giving intermediate 482. Subsequent treatment with a Grignard reagent leads to enamine 483 (Scheme 79) <1995TL343>. [Pg.59]

Under basic conditions (Triton B), in the presence of acrolein, 2-formylpyrrole derivative 216 underwent iV-alkylation by 1,4-addition followed by intramolecular aldolization-crotonization leading to 377-pyrrolizine 217 (Scheme 52)... [Pg.27]

Brown proposed a mechanism where the enolate radical resulting from the radical addition reacts with the trialkylborane to give a boron enolate and a new alkyl radical that can propagate the chain (Scheme 24) [61]. The formation of the intermediate boron enolate was confirmed by H NMR spectroscopy [66,67]. The role of water present in the system is to hydrolyze the boron enolate and to prevent its degradation by undesired free-radical processes. This hydrolysis step is essential when alkynones [68] and acrylonitrile [58] are used as radical traps since the resulting allenes or keteneimines respectively, react readily with radical species. Maillard and Walton have shown by nB NMR, ll NMR und IR spectroscopy, that tri-ethylborane does complex methyl vinyl ketone, acrolein and 3-methylbut-3-en-2-one. They proposed that the reaction of triethylborane with these traps involves complexation of the trap by the Lewis acidic borane prior to conjugate addition [69]. [Pg.95]

Density functional theory has been used to investigate the Diels-Alder reactions of triazolinedione with s-cis- and. y-fran -butadiene. " Combined quantum mechanics-molecular mechanics calculations have been used to investigate the asymmetric Diels-Alder reaction of cyclopentadiene with the complex dienophiles AICI3-methyl acrylate and methoxyaluminium dichloride-acrolein.Equilibrium constants have been determined for the molecular complexes formed from 1-alkyl-1-(2-naphthyl)ethenes and 1-vinylnaphthalene with TCNE in C1(CH2)2C1 at 27.1 °C ... [Pg.476]

The Jackson laboratory of the du Pont Company soon became interested in the catalytic power of hydrogen fluoride. The results of its work are recorded in three excellent papers. Using acrolein as the alkylating agent and hydrogen fluoride as the catalyst, peri syntheses have been performed (Calcott et al, 32), both those that are catalyzed by sulfuric acid and others that are not. By appropriate condensation, dehydration, and reduction, perylene was obtained from phenanthrene... [Pg.209]

Cyclophosphamide (Cytoxan) is the most versatile and useful of the nitrogen mustards. Preclinical testing showed it to have a favorable therapeutic index and to possess the broadest spectrum of antitumor activity of all alkylating agents. As with the other nitrogen mustards, cyclophosphamide administration results in the formation of cross-links within DNA due to a reaction of the two chloroethyl moieties of cyclophosphamide with adjacent nucleotide bases. Cyclophosphamide must be activated metabofically by microsomal enzymes of the cytochrome P450 system before ionization of the chloride atoms and formation of the cyclic ethylenimmonium ion can occur. The metabolites phosphoramide mustard and acrolein are thought to be the ultimate active cytotoxic moiety derived from cyclophosphamide. [Pg.640]

Reaction of oxazolones with 1-azadienes, for example, imines prepared from 3-(2-furyl)acrolein or cinnamaldehyde, affords 2-pyridones 316. Several mechanisms have been proposed to explain the formation of 316. However, products like 315 have also been isolated. The authors proposed that 315 arises from alkylation at C-4 of the oxazolone by the 1-azadiene. Subsequent nucleophilic attack by the amino group with ring opening then yields the 2-pyridone (Scheme 7.103). Representative examples of 2-pyridones prepared from 1-azadienes are shown in Table 7.28 (Fig. 7.30). [Pg.198]

The 2-methylenecyclopentanone initially formed presumably rearranges into 2-methyl-2-cyclopentenone under the reaction conditions. The final step of the mechanism, elimination of the cobalt carbonyl group, is not well understood but the same kind of elimination and reduction reactions occur with known 3-ketocobalt complexes. As mentioned above, crotonaldehyde, acrolein (27), and glyddaldehyde (38) react rapidly with cobalt hydrocarbonvl under similar conditions to give reduction products, rather than forming stable alkyl- or acyl-cobalt tetracarbonyl derivatives. [Pg.187]

In order to facilitate the four-center reaction in Scheme 14, steric congestion between the alkyl group R and the carbonyl carbon needs to be avoided. In Scheme 18, a reaction using the bulky (r-BuMgCl)2(acrolein)2 system was examined. [Pg.396]


See other pages where Acroleins, 2-alkyl-3- is mentioned: [Pg.411]    [Pg.154]    [Pg.202]    [Pg.396]    [Pg.124]    [Pg.55]    [Pg.257]    [Pg.292]    [Pg.223]    [Pg.1169]    [Pg.10]    [Pg.278]    [Pg.31]    [Pg.775]    [Pg.30]    [Pg.127]    [Pg.184]    [Pg.298]    [Pg.75]    [Pg.391]    [Pg.841]    [Pg.81]    [Pg.121]    [Pg.656]    [Pg.591]    [Pg.467]    [Pg.401]    [Pg.443]    [Pg.248]    [Pg.1166]   
See also in sourсe #XX -- [ Pg.976 ]




SEARCH



Acrolein

Acroleine

Alkylating agent acrolein

© 2024 chempedia.info