Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids activity coefficients

The film pressure of a myristic acid film at 20°C is 10 dyn/cm at an area of 23 A per molecule the limiting area at high pressures can be taken as 20 A per molecule. Calculate what the film pressure should be, using Eq. IV-36 with / = 1, and what the activity coefficient of water in the interfacial solution is in terms of that model. [Pg.157]

Investigations of the solubilities of aromatic compounds in concentrated and aqueous sulphuric acids showed the activity coefficients of nitrocompounds to behave unusually when the nitro-compound was dissolved in acid much more dilute than required to effect protonation. This behaviour is thought to arise from changes in the hydrogenbonding of the nitro group with the solvent. [Pg.18]

The activity coefficients in sulphuric acid of a series of aromatic compounds have been determined. The values for three nitro-com-pounds are given in fig. 2.2. The nitration of these three compounds over a wide range of acidity was also studied, and it was shown that if the rates of nitration were corrected for the decrease of the activity coefficients, the corrected rate constant, varied only slightly... [Pg.18]

That the rate profiles are close to parallel shows that the variations in rates reflect the changing concentration of nitronium ions, rather than idiosyncrasies in the behaviour of the activity coefficients of the aromatic compounds. The acidity-dependences of the activity coefficients of / -nitrotoluene, o- and -chloronitrobenzene (fig. 2.2, 2.3.2), are fairly shallow in concentrations up to about 75 %, and seem to be parallel. In more concentrated solutions the coefficients change more rapidly and it... [Pg.24]

Provided that the ratio of activity coefficients is invariant over the range of acidity concerned, a linear relationship with unit slope between logic Aaobs. 2nd +logic % o) i expected. However, there is... [Pg.150]

Considering first pure nitric acid as the solvent, if the concentrations of nitronium ion in the absence and presence of a stoichiometric concentration x of dinitrogen tetroxide are yo and y respectively, these will also represent the concentrations of water in the two solutions, and the concentrations of nitrate ion will be y and x- y respectively. The equilibrium law, assuming that the variation of activity coefficients is negligible, then requires that ... [Pg.221]

The reduction potentials for the actinide elements ate shown in Figure 5 (12—14,17,20). These ate formal potentials, defined as the measured potentials corrected to unit concentration of the substances entering into the reactions they ate based on the hydrogen-ion-hydrogen couple taken as zero volts no corrections ate made for activity coefficients. The measured potentials were estabhshed by cell, equihbrium, and heat of reaction determinations. The potentials for acid solution were generally measured in 1 Af perchloric acid and for alkaline solution in 1 Af sodium hydroxide. Estimated values ate given in parentheses. [Pg.218]

Accuracy and Interpretation of Measured pH Values. The acidity function which is the experimental basis for the assignment of pH, is reproducible within about 0.003 pH unit from 10 to 40°C. If the ionic strength is known, the assignment of numerical values to the activity coefficient of chloride ion does not add to the uncertainty. However, errors in the standard potential of the cell, in the composition of the buffer materials, and ia the preparatioa of the solutioas may raise the uacertaiaty to 0.005 pH unit. [Pg.465]

The activity of any ion, a = 7m, where y is the activity coefficient and m is the molaHty (mol solute/kg solvent). Because it is not possible to measure individual ionic activities, a mean ionic activity coefficient, 7, is used to define the activities of all ions in a solution. The convention used in most of the Hterature to report the mean ionic activity coefficients for sulfuric acid is based on the assumption that the acid dissociates completely into hydrogen and sulfate ions. This assumption leads to the foUowing formula for the activity of sulfuric acid. [Pg.572]

The activity coefficients of sulfuric acid have been deterrnined independentiy by measuring three types of physical phenomena cell potentials, vapor pressure, and freeting point. A consistent set of activity coefficients has been reported from 0.1 to 8 at 25°C (14), from 0.1 to 4 and 5 to 55°C (18), and from 0.001 to 0.02 m at 25°C (19). These values are all based on cell potential measurements. The activity coefficients based on vapor pressure measurements (20) agree with those from potential measurements when they are corrected to the same reference activity coefficient. [Pg.573]

To calculate the open circuit voltage of the lead—acid battery, an accurate value for the standard cell potential, which is consistent with the activity coefficients of sulfuric acid, must also be known. The standard cell potential for the double sulfate reaction is 2.048 V at 25 °C. This value is calculated from the standard electrode potentials for the (Pt)H2 H2S04(yw) PbS04 Pb02(Pt) electrode 1.690 V (14), for the Pb(Hg) PbS04 H2S04(yw) H2(Pt) electrode 0.3526 V (19), and for the Pb Pb2+ Pb(Hg) 0.0057 V (21). [Pg.573]

The last term in Eq. (6-32) describes the temperature dependence of the molar concentration in water, this contributes only about —45 cal mol to E at room temperature. In a strong mineral acid solution, the temperature dependence of the activity coefficient term contributes about —90 cal mol . These are small quantities relative to the uncertainty in E s-... [Pg.256]

Select now a second neutral indicator base C that is weaker than B by roughly an order of magnitude thus, a solvent can be found of such acidity that a significant fraction of both B and C will be protonated, but this will no longer be a dilute aqueous solution, so the individual activity coefficients will in general deviate from unity. For this solution containing low concentrations of both B and C,... [Pg.447]

The proliferation of acidity functions is a consequence of the activity coefficient cancellation assumption. According to Eq. (8-89), a plot of log(cB/cBH+) against Hq should be linear with unit slope. Such plots are usually linear (for bases of closely related structure), but the slopes often differ from unity. - This behavior is an indication that the cancellation assumption (also called the zero-order approximation) is not valid, and several groups have devised alternatives. We will use the symbolism of Cox and Yates. ... [Pg.450]

Interionic effects are, however, not negligible even for weak acids and the activity coefficient product must be introduced into the expression for the ionisation constant ... [Pg.31]


See other pages where Acids activity coefficients is mentioned: [Pg.403]    [Pg.793]    [Pg.117]    [Pg.403]    [Pg.793]    [Pg.117]    [Pg.132]    [Pg.580]    [Pg.17]    [Pg.19]    [Pg.19]    [Pg.25]    [Pg.176]    [Pg.239]    [Pg.239]    [Pg.175]    [Pg.490]    [Pg.491]    [Pg.464]    [Pg.1314]    [Pg.1319]    [Pg.232]    [Pg.233]    [Pg.227]    [Pg.209]    [Pg.257]    [Pg.455]    [Pg.1321]    [Pg.231]    [Pg.259]    [Pg.25]    [Pg.42]   
See also in sourсe #XX -- [ Pg.79 , Pg.83 ]

See also in sourсe #XX -- [ Pg.81 , Pg.85 ]

See also in sourсe #XX -- [ Pg.104 , Pg.108 ]




SEARCH



Activity Coefficients of Acids, Bases, and

Activity Coefficients of Acids, Bases, and Salts

Activity coefficient sulfurous acid

Activity coefficient, of amino-acids

Amino-acids activity coefficients

Aromatic compounds, activity coefficients sulphuric acid

Hydrobromic acid activity coefficients

Hydrochloric acid, activity coefficient concentration cells

Hydrochloric acid, activity coefficient ratios

Hydrochloric acid, activity coefficients

Nitric acid concentration, activity coefficient

Nitric acid, activity coefficient

Sulfuric acid activity coefficients

© 2024 chempedia.info