Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ACETYLENIC HYDROCARBONS ALKYNES Acetylene

There are no liquid alkynes whieh can be conveniently prepared by the elementary student. Some of the properties of aeetylenie hydrocarbons may be studied with the gas, aeetylene. Although the latter may be prepared in moderate 3deld by the addition of ethylene dibromide to a boiling aleoholic solution of potassium hydroxide or of sodium ethoxide, [Pg.245]

The only reaction which calls for comment here is the formation of red cuprous acetylide with an ammoniacal solution of cuprous chloride  [Pg.245]

Optional experiment. When all the air has been displaced, collect a test-tube of the gas over water (by appropriate inclination of the end of the delivery tube beneath the mouth of a test-tube filled with water and supported in a beaker of water). Observe the colour and odour of the gas. Ignite the test-tube of gas, and note the luminosity of the flame and the amount of carbon deposited. Pure acetylene is almost odourless the characteristic odour observed is due to traces of hydrides of phosphorus, arsenic and sulphur. [Pg.245]

Formulate the chemical reactions which occur in the above experiments and show these to the instructor for comment. [Pg.246]


Carbon can also form multiple bonds with other carbon atoms. This results in unsaturated hydrocarbons such as olefins (alkenes), containing a carbon-carbon double bond, or acetylenes (alkynes), containing a carbon-carbon triple bond. Dienes and polyenes contain two or more unsaturated bonds. [Pg.127]

We conclude this introduction to hydrocarbons by describing the orbital hybridization model of bonding m ethylene and acetylene parents of the alkene and alkyne families respectively... [Pg.89]

Hydrocarbons that contain a carbon-carbon triple bond are called alkynes Non cyclic alkynes have the molecular formula C H2 -2 Acetylene (HC=CH) is the simplest alkyne We call compounds that have their triple bond at the end of a carbon chain (RC=CH) monosubstituted or terminal alkynes Disubstituted alkynes (RC=CR ) have internal triple bonds You will see m this chapter that a carbon-carbon triple bond is a functional group reacting with many of the same reagents that react with the double bonds of alkenes... [Pg.363]

In naming alkynes the usual lUPAC rules for hydrocarbons are followed and the suffix ane is replaced by yne Both acetylene and ethyne are acceptable lUPAC names for HC=CH The position of the triple bond along the chain is specified by number m a manner analogous to alkene nomenclature... [Pg.364]

Alkynes are hydrocarbons that contain a carbon-carbon triple bond Sim pie alkynes having no other functional groups or rings have the general formula C H2 -2 Acetylene is the simplest alkyne... [Pg.382]

Acetylene and terminal alkynes are more acidic than other hydrocarbons They have s of approximately 26 compared with about 45 for alkenes and about 60 for alkanes Sodium amide is a strong enough base to remove a proton from acetylene or a terminal alkyne but sodium hydroxide is not... [Pg.382]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Another analogous series of unsaturated hydrocarbons that contain just one multiple bond, but, instead of being a double bond, it is a triple bond is the alkynes. The names of all the compounds end in -yne. The only compound m this series that is at all common happens to be an extremely hazardous material. It is a highly unstable (to heat, shock, and pressure), highly flammable gas that is the first compound in the series. This two-carbon unsaturated hydrocarbon with a triple bond between its two carbon atoms is called ethyne, and indeed this is its proper name. It is, however, known by its common name, acetylene. [Pg.189]

The most distinctive aspect of the chemistry of acetylene and terminal alkynes is their- acidity. As a class, compounds of the type RC=CH are the most acidic of all hydrocarbons. The structural reasons for this property, as well as the ways in which it is used to advantage in chemical synthesis, are important elements of this chapter. [Pg.363]

The reaction is endothennic, and the equilibrium favors ethylene at low temperatures but shifts to favor acetylene above 1150°C. Indeed, at very high temperatures most hydrocarbons, even methane, are converted to acetylene. Acetylene has value not only by itself but is also the stalling material from which higher alkynes are prepaied. [Pg.364]

Although acetylene and terminal alkynes are far- stronger acids than other hydrocarbons, we must remember that they are, nevertheless, very weak acids—much weaker than water and alcohols, for exanple. Hydroxide ion is too weak a base to convert acetylene to its anion in meaningful amounts. The position of the equilibrium described by the following equation lies overwhelmingly to the left ... [Pg.369]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Acetylene.. H—C= C—H, the simplest alkyne, was once widely used in industry as the starting material for the preparation of acetaldehyde, acetic acid, vinyl chloride, and other high-volume chemicals, but more efficient routes to these substances using ethylene as starting material are now available. Acetylene is still used in the preparation of acrylic polymers but is probably best known as the gas burned in high-temperature oxy-acetylene welding torches. [Pg.259]

Now consider the alkynes, hydrocarbons with carbon-carbon triple bonds. The Lewis structure of the linear molecule ethyne (acetylene) is H—O C- H. To describe the bonding in a linear molecule, we need a hybridization scheme that produces two equivalent orbitals at 180° from each other this is sp hybridization. Each C atom has one electron in each of its two sp hybrid orbitals and one electron in each of its two perpendicular unhybridized 2p-orbitals (43). The electrons in the sp hybrid orbitals on the two carbon atoms pair and form a carbon—carbon tr-bond. The electrons in the remaining sp hybrid orbitals pair with hydrogen Ls-elec-trons to form two carbon—hydrogen o-bonds. The electrons in the two perpendicular sets of 2/z-orbitals pair with a side-by-side overlap, forming two ir-honds at 90° to each other. As in the N2 molecule, the electron density in the o-bonds forms a cylinder about the C—C bond axis. The resulting bonding pattern is shown in Fig. 3.23. [Pg.237]

The alkynes are hydrocarbons that have at least one carbon-carbon triple bond. The simplest is ethyne, FIO CH, which is commonly called acetylene (20). Alkynes are named like the alkenes but with the suffix -yne. [Pg.851]

No defined complexes could be isolated from reactions of complex 1 with acetone Me2C=0. Complexes 2a and 2b react with acetone to give the zirconafuranone 2c, which is an interesting zirconocene precursor in view of its extremely good solubility in hydrocarbon solvents and because of its ability to dissociate into the alkyne complex [2f], It is also possible to cleanly substitute the bis(trimethylsilyl)acetylene unit so as to obtain the complex 47, or, alternatively, to substitute the acetone with formation of the zirconafuranone 95 (Fig. 10.14) [2f],... [Pg.371]

Alkanes n-butene, isopentane, isooctane Cydoalkanes t dohezane, methylcyclopentane Olefins (sometimes called alkenes ) ethylene, propylene, butene Cydoolefins ( clohezene Alkynes acetylene Aromatics toluene, i ene CHLORINATED HYDROCARBONS ALDEHYDES, RCHO formaldehyde, acetaldehyde KETONES, RCX R " acetone, methylethylketone NITRIC OXIDE, NO ... [Pg.15]

Standard organolithium reagents such as butyllithium, ec-butyllithium or tert-butyllithium deprotonate rapidly, if not instantaneously, the relatively acidic hydrocarbons of the 1,4-diene, diaryhnethane, triarylmethane, fluorene, indene and cyclopentadiene families and all terminal acetylenes (1-alkynes) as well. Butyllithium alone is ineffective toward toluene but its coordination complex with A/ ,A/ ,iV, iV-tetramethylethylenediamine does produce benzyllithium in high yield when heated to 80 To introduce metal into less reactive hydrocarbons one has either to rely on neighboring group-assistance or to employ so-called superbases. [Pg.457]

A hydrocarbon with a triple bond between carbons is an alkyne, and the simplest compound in this class is acetylene, C2H2, as shown in Figure 6-8. [Pg.62]

Once again, each carbon has exactly four bonds. Of course, the triple bond between carbons allows each carbon to bond to only one more atom. In acetylene, the single bond is to hydrogen, but in other alkynes, the single bond is to another carbon. Table 6-3 compares 3 hydrocarbons that contain the same number of carbon atoms. [Pg.62]

Hydrocarbons that contain one or more carbon-to-carbon triple bonds are called alkynes. The names of alkynes end in -yne. Ethyne, commonly known as acetylene, is the simplest alkyne. It consists of two carbon atoms with a triple bond between them, with each carbon also bonded to one hydrogen atom. The chemical formula for ethyne is C2H2. [Pg.28]

Alkynes are hydrocarbons that contain a carbon-carbon triple bond. A triple bond consists of a cr bond and two tt bonds. The general formula for the alkynes is C li2n-2- The triple bond possesses two elements of unsaturation. Alkynes are commonly named as substituted acetylenes. Compounds with triple bonds at the end of a molecule are called terminal alkynes. Terminal —CH groups are called acetylenic hydrogens. If the triple bond has two alkyl groups on both sides, it is called an internal alkyne. [Pg.108]

There are no other alkynes that are of commercial importance, and so acetylene will be the only member of this series that is considered in fire discussions. There are other alkynes, however, along with hydrocarbons that might have one double bond and a triple bond present in the molecule. [Pg.160]

Alkyne ( Acetylene Series). A group of unsaturated aliphatic hydrocarbons of the general formula C, contg triple bonds. [Pg.133]


See other pages where ACETYLENIC HYDROCARBONS ALKYNES Acetylene is mentioned: [Pg.245]    [Pg.245]    [Pg.245]    [Pg.245]    [Pg.245]    [Pg.1203]    [Pg.374]    [Pg.245]    [Pg.13]    [Pg.245]    [Pg.1203]    [Pg.245]    [Pg.374]    [Pg.193]    [Pg.131]    [Pg.272]    [Pg.276]    [Pg.941]    [Pg.272]    [Pg.368]    [Pg.128]    [Pg.142]    [Pg.160]    [Pg.7]    [Pg.142]   


SEARCH



Acetylene hydrocarbons

Acetylenic hydrocarbons

Alkynes hydrocarbonation

Hydrocarbons alkynes

© 2024 chempedia.info