Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene-chlorine mixtures, explosive

Acetylene-chlorine mixtures explode violently under even weak irradiation. The explosion limit lies at a 10% chlorine content. To minimise the danger of explosion chlorine must be added continuously and with cooling. [Pg.115]

Interaction of chlorine with methane is explosive at ambient temperature over yellow mercury oxide [1], and mixtures containing above 20 vol% of chlorine are explosive [2], Mixtures of acetylene and chlorine may explode on initiation by sunlight, other UV source, or high temperatures, sometimes very violently [3], Mixtures with ethylene explode on initiation by sunlight, etc., or over mercury, mercury oxide or silver oxide at ambient temperature, or over lead oxide at 100°C [1,4], Interaction with ethane over activated carbon at 350°C has caused explosions, but added carbon dioxide reduces the risk [5], Accidental introduction of gasoline into a cylinder of liquid chlorine caused a slow exothermic reaction which accelerated to detonation. This effect was verified [6], Injection of liquid chlorine into a naphtha-sodium hydroxide mixture (to generate hypochlorite in situ) caused a violent explosion. Several other incidents involving violent reactions of saturated hydrocarbons with chlorine were noted [7],... [Pg.1406]

CH2=CHC = CCH = CH2. a colourless liquid which turns yellow on exposure to the air it has a distinct garlic-like odour b.p. 83-5°C. Manufactured by the controlled, low-temperature polymerization of acetylene in the presence of an aqueous solution of copper(I) and ammonium chlorides. It is very dangerous to handle, as it absorbs oxygen from the air to give an explosive peroxide. When heated in an inert atmosphere, it polymerizes to form first a drying oil and finally a hard, brittle insoluble resin. Reacts with chlorine to give a mixture of chlorinated products used as drying oils and plastics. [Pg.145]

Hydrochloric acid may conveniently be prepared by combustion of hydrogen with chlorine. In a typical process dry hydrogen chloride is passed into a vapour blender to be mixed with an equimolar proportion of dry acetylene. The presence of chlorine may cause an explosion and thus a device is used to detect any sudden rise in temperature. In such circumstances the hydrogen chloride is automatically diverted to the atmosphere. The mixture of gases is then led to a multi-tubular reactor, each tube of which is packed with a mercuric chloride catalyst on an activated carbon support. The reaction is initiated by heat but once it has started cooling has to be applied to control the highly exothermic reaction at about 90-100°C. In addition to the main reaction the side reactions shown in Figure 12.6 may occur. [Pg.314]

During maintenance work, simultaneous release of chlorine and acetylene from two plants into a common vent line leading to a flare caused an explosion in the line [10]. The violent interaction of liquid chlorine injected into ethane at 80°C/10 bar becomes very violent if ethylene is also present [11]. The relationship between critical pressure and composition for self-ignition of chlorine—propane mixtures at 300°C was studied, and the tendency is minimal for 60 40 mixtures. Combustion is explosive under some conditions [12]. Precautions to prevent explosions during chlorination of solid paraffin hydrocarbons are detailed [13]. In the continuous chlorination of polyisobutene at below 100°C in absence of air, changes in conditions (increase in chlorine flow, decrease in polymer feed) leading to over-chlorination caused an exotherm to 130°C and ignition [14],... [Pg.1453]

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]


See other pages where Acetylene-chlorine mixtures, explosive is mentioned: [Pg.264]    [Pg.294]    [Pg.257]    [Pg.257]    [Pg.323]    [Pg.175]    [Pg.275]    [Pg.282]    [Pg.333]    [Pg.473]    [Pg.476]    [Pg.236]    [Pg.549]    [Pg.295]    [Pg.229]    [Pg.20]    [Pg.873]    [Pg.295]    [Pg.229]    [Pg.20]    [Pg.21]    [Pg.33]    [Pg.155]    [Pg.198]    [Pg.200]    [Pg.230]    [Pg.241]    [Pg.285]    [Pg.285]    [Pg.445]    [Pg.492]    [Pg.499]    [Pg.558]    [Pg.586]    [Pg.630]    [Pg.653]    [Pg.742]    [Pg.824]    [Pg.888]    [Pg.891]   


SEARCH



Acetylene-chlorine mixtures, explosive limits

© 2024 chempedia.info