Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylation mechanism

The acetylation mechanism which is currently accepted involves three successive steps, e.g. for anisole acetylation (Figure 3.3) ... [Pg.76]

The alcohol is acetylated by the normal acetylation mechanism of alcohols, in which acid chlorides and pyridine are used. [Pg.84]

The role of pantothenic acid in human nutrition has not been established. It is of wide natural occurrence, as the name implies. Metabol-ically, pantothenic acid seems to have some special role in the adrenals, and this may be a link with acetylation mechanisms in the synthesis of steroids (Hughes, 1953). The burning feet" syndrome encountered in prisoners of war and other malnourished groups has been specifically treated with pantothenic acid (Gopalan, 1946). The figures given by Williams et al. (1950) for B vitamins in different foods and tissues can be considered to show a ratio of pantothenic acid to thiamine, riboflavin, and niacin at an amount about half that of the niacin, but ten times the thiamine. No precise requirement can be stated. [Pg.230]

Figure 6.34 The Exemplification of the Acetylation Mechanism in which a Bronsted/Lewis Pair of the Magnesium Fluoride Catalyst Is Involved. Figure 6.34 The Exemplification of the Acetylation Mechanism in which a Bronsted/Lewis Pair of the Magnesium Fluoride Catalyst Is Involved.
In general, benzoylation of aromatic amines finds less application than acetylation in preparative work, but the process is often employed for the identification and characterisation of aromatic amines (and also of hydroxy compounds). Benzoyl chloride (Section IV, 185) is the reagent commonly used. This reagent is so slowly hydrolysed by water that benzoylation can be carried out in an aqueous medium. In the Schotten-Baumann method of benzoylation the amino compound or its salt is dissolved or suspended in a slight excess of 8-15 per cent, sodium hydroxide solution, a small excess (about 10-15 per cent, more than the theoretical quantity) of benzoyl chloride is then added and the mixture vigorously shaken in a stoppered vessel (or else the mixture is stirred mechanically). Benzoylation proceeds smoothly and the sparingly soluble benzoyl derivative usually separates as a solid. The sodium hydroxide hydrolyses the excess of benzoyl chloride, yielding sodium benzoate and sodium chloride, which remain in solution ... [Pg.582]

Another reason for discussing the mechanism of nitration in these media separately from that in inert organic solvents is that, as indicated above, the nature of the electrophile is not established, and has been the subject of controversy. The cases for the involvement of acetyl nitrate, protonated acetyl nitrate, dinitrogen pentoxide and the nitronium ion have been advocated. [Pg.77]

Because of the chemical similarity between benzoyl nitrate and the acetyl nitrate which is formed in solutions of nitric acid in acetic anhydride, it is tempting to draw analogies between the mechanisms of nitration in such solutions and in solutions of benzoyl nitrate in carbon tetrachloride. Similarities do exist, such as the production by these reagents of higher proportions of o-substituted products from some substrates than are produced by nitronium ions, as already mentioned and further discussed below. Further, in solutions in carbon tetrachloride of acetyl nitrate or benzoyl nitrate, the addition of acetic anhydride and benzoic anhydride respectively reduces the rate of reaction, implying that dinitrogen pentoxide may also be involved in nitration in acetic anhydride. However, for solutions in which acetic anhydride is also the solvent, the analogy should be drawn with caution, for in many ways the conditions are not comparable. Thus, carbon tetrachloride is a non-polar solvent, in which, as has been shown above,... [Pg.78]

Certain features of the addition of acetyl nitrate to olefins in acetic anhydride may be relevant to the mechanism of aromatic nitration by this reagent. The rapid reaction results in predominantly cw-addition to yield a mixture of the y -nitro-acetate and y5-nitro-nitrate. The reaction was facilitated by the addition of sulphuric acid, in which case the 3rield of / -nitro-nitrate was reduced, whereas the addition of sodium nitrate favoured the formation of this compound over that of the acetate. As already mentioned ( 5.3. i), a solution of nitric acid (c. i 6 mol 1 ) in acetic anhydride prepared at — 10 °C would yield 95-97 % of the nitric acid by precipitation with urea, whereas from a similar solution prepared at 20-25 °C and cooled rapidly to —10 °C only 30% of the acid could be recovered. The difference between these values was attributed to the formation of acetyl nitrate. A solution prepared at room... [Pg.83]

The authors of this work were concerned chiefly with additions to alkenes, and evidence about the mechanism of aromatic nitration arises by analogy. Certain aspects of their work have been repeated to investigate whether the nitration of aromatic compounds shows the same phenomena ( 5-3-6). It was shown that solutions of acetyl nitrate in acetic anhydride were more powerful nitrating media for anisole and biphenyl than the corresponding solutions of nitric acid in which acetyl nitrate had not been formed furthermore, it appeared that the formation of acetyl nitrate was faster when 95-98% nitric acid was used than when 70 % nitric acid was used. [Pg.85]

The observation of nitration at a rate independent of the concentration and the nature of the aromatic means only that the effective nitrating species is formed slowly in a step which does not involve the aromatic. The fact that the rates of zeroth-order nitration under comparable conditions in solutions of nitric acid in acetic acid, sulpholan and nitromethane differed by at most a factor of 50 indicated that the slow step in these three cases was the same, and that the solvents had no chemical involvement in this step. The dissimilarity in the rate between these three cases and nitration with acetyl nitrate in acetic anhydride argues against a common mechanism, and indeed it is not required from evidence about zeroth-order rates alone that in the latter solutions the slow step should involve the formation of the nitronium ion. [Pg.88]

Despite the fact that solutions of acetyl nitrate prepared from purified nitric acid contained no detectable nitrous acid, the sensitivity of the rates of nitration of very reactive compounds to nitrous acid demonstrated in this work is so great that concentrations of nitrous acid below the detectable level could produce considerable catalytic effects. However, because the concentration of nitrous acid in these solutions is unknown the possibility cannot absolutely be excluded that the special mechanism is nitration by a relatively unreactive electrophile. Whatever the nature of the supervenient reaction, it is clear that there is at least a dichotomy in the mechanism of nitration for very reactive compounds, and that, unless the contributions of the separate mechanisms can be distinguished, quantitative comparisons of reactivity are meaningless. [Pg.91]

The mechanisms of nitration with acetyl nitrate in acetic anhydride... [Pg.103]

By analogy with the mechanisms of nitration in other media, and from a knowledge of the composition of solutions of acetyl nitrate in acetic anhydride, the following may be considered possible nitrating species in these solutions ... [Pg.103]

Fatty acids are biosynthesized by way of acetyl coenzyme A The following sec tion outlines the mechanism of fatty acid biosynthesis... [Pg.1074]

FIGURE 26 3 Mechanism of biosynthesis of a butanoyl group from acetyl and malonyl building blocks... [Pg.1076]

Mode of Action. All of the insecticidal carbamates are cholinergic, and poisoned insects and mammals exhibit violent convulsions and other neuromuscular disturbances. The insecticides are strong carbamylating inhibitors of acetylcholinesterase and may also have a direct action on the acetylcholine receptors because of their pronounced stmctural resemblance to acetylcholine. The overall mechanism for carbamate interaction with acetylcholinesterase is analogous to the normal three-step hydrolysis of acetylcholine however, is much slower than with the acetylated enzyme. [Pg.293]

A Acetylation, O-Phosphorylation, and O-Adenylylation. A/-Acetylation, O-phosphorjiation, and O-adenyljiation provide mechanisms by which therapeutically valuable aminocyclitol antibiotics, eg, kanamycia [8063-07-8] gentamicin [1403-66-3] sisomicin [32385-11-8], streptomycia [57-92-1], neomycin, or spectinomycin are rendered either partially or completely iaactive. Thus, eg, kanamycia B [4696-78-8] (50) can be iaactivated by modification at several sites, as shown. The elucidation of these mechanisms has allowed chemical modification of the sites at which the iaactivation occurs. Several such bioactive analogues, eg, dibekacia and amikacin have been prepared and are not subject to the iaactivation hence, they inhibit those organisms against which the parent antibiotics are iaeffective (96) (see Antibacterial agents, synthetic). [Pg.314]

Acylation. Aliphatic amine oxides react with acylating agents such as acetic anhydride and acetyl chloride to form either A[,A/-diaLkylamides and aldehyde (34), the Polonovski reaction, or an ester, depending upon the polarity of the solvent used (35,36). Along with a polar mechanism (37), a metal-complex-induced mechanism involving a free-radical intermediate has been proposed. [Pg.191]

Crystallization Method. Such methods as mechanical separation, preferential crystallisation, and substitution crystallisation procedures are included in this category. The preferential crystallisation method is the most popular. The general procedure is to inoculate a saturated solution of the racemic mixture with a seed of the desired enantiomer. Resolutions by this method have been reported for histidine (43), glutamic acid (44), DOPA (45), threonine (46), A/-acetyl phenylalanine (47), and others. In the case of glutamic acid, the method had been used for industrial manufacture (48). [Pg.278]

Ca.ta.lysts for Acetylation. Sulfuric acid is the preferred catalyst for esterifying cellulose and is the only known catalyst used commercially for this function. The role of sulfuric acid during acetylation has been discussed (77,78). In the presence of acetic anhydride, sulfuric acid rapidly and almost quantitatively forms the cellulose sulfate acid ester (77). Even in the absence of anhydride, the sulfuric acid is physically or mechanically retained (sorbed) on the cellulose. The degree of absorption is a measure of the reactivity or accessibiUty of different celluloses. [Pg.253]

The reaction of alkyl nitro compounds with acetyl chloride in the presence of an alkenic compound produced a 2-isoxazoline. The mechanism is believed to proceed via a nitrile oxide and is illustrated in Scheme 112 (B-79MI41613). [Pg.92]

In organisms which produce cephalosporin and cephamycins, the configuration of the O -aminoadipyl side chain of (30) is D, while penicillin producers yield the l isomer. The exact point at which the configuration is inverted is unknown. Subsequent steps in cephalosporin biosynthesis are believed to involve ring expansion to deacetoxycephalosporin C (31), which may proceed by a mechanism analogous to the chemical pathway (see Section 5.10.4.2), followed by hydroxylation and acetylation at C-3 to produce cephalosporin C (32). [Pg.292]


See other pages where Acetylation mechanism is mentioned: [Pg.212]    [Pg.57]    [Pg.476]    [Pg.272]    [Pg.400]    [Pg.212]    [Pg.57]    [Pg.476]    [Pg.272]    [Pg.400]    [Pg.731]    [Pg.815]    [Pg.88]    [Pg.96]    [Pg.201]    [Pg.239]    [Pg.240]    [Pg.154]    [Pg.381]    [Pg.153]    [Pg.92]    [Pg.296]    [Pg.481]    [Pg.512]    [Pg.62]    [Pg.152]    [Pg.100]    [Pg.249]    [Pg.507]    [Pg.269]    [Pg.278]    [Pg.140]   
See also in sourсe #XX -- [ Pg.57 , Pg.76 ]

See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Acetyl decomposition mechanism

Acetylation mechanical-based

Mechanical properties acetylated wood

Mechanical, properties acetylation

© 2024 chempedia.info