Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals, a-hydroxy

Claisen rearrangement of allyl a-hydroxy acetates, a-hydroxy-y,S-unsaturated acids. Allyl a-hydroxy acetates undergo Claisen rearrangement when treated with LDA (2 equiv.) to give, after aqueous workup, a-hydroxy-)1,6-unsaturated acids. 1 Example ... [Pg.491]

Glycolate acetate, lactate, propionate, aceto acetate,a hydroxy butyrate, chloroacetate, isobutyrate, butyrate... [Pg.66]

Further versatihty was added to the range of substituents available for introduction into the 6a-position by use of the 6a(succinimido-oxy) derivative (18) prepared by treatment of the 6a-(methylthio) derivative (17) with A/-hydroxy-succinimide and silver(I) acetate in dimethylformamide in virtually quantitative yield. In this way the 6a-cyanopeniciILin (19, X = CN), 6a-viny1penici11in (19, X = CH=CH2) and 6a-pheny1penici11in (19, X = C H ) could be prepared in high yield (43). [Pg.80]

Solvent Evaporation from Solutions of Thermoplastic Polymers. A solution of a copolymer of vinyl chloride (chloroethene) [75-01-4] C2H2CI, vinyl acetate (acetic acid ethenyl ester) [108-05-4] and a hydroxy-functional vinyl monomer having a number average molecular... [Pg.333]

Treatment of a-hydroxy-ketones or -aldehydes with ammonium acetate (65BSF3476, 68BSF4970) results in the formation of dihydropyrazines, presumably by direct amination of the hydroxyketone followed by self-condensation (79AJC1281). Low yields of pyrazines have been noted in the electrolysis of ketones in admixture with KI and ammonia, and again it appears probable that the a-aminoketone derived by way of the a-iodoketone is the intermediate (69CI(L)237>. [Pg.185]

These derivatives are prepared to protect a-hydroxy carboxylic acids they are cleaved by acidic hydrolysis of the acetal structure (HCl, DMF, 50°, 7 h, 71% yield), or basic hydrolysis of the lactone. ... [Pg.267]

Preparation of 18,20-Cyclo-5a-pregnane-3, 20-diol 3-Acetate ° A solution of 5 g of 3j9-hydroxy-5oc-pregnan-20-one 3-acetate in 1000 ml of spectroscopically pure ethanol is irradiated with a 250 Watt Philips Biosol A mercury high pressure lamp No. 10/27 through a cental water cooled pyrex jacket under nitrogen for 4 hr. The solvent is then evaporated under reduced pressure and the residues from 2 such reactions are combined and chromatographed on 300 g of neutral alumina (activity II). [Pg.264]

Hydroxy-6-methyl-10 (5 6) abeo-cholestan-5-one acetate, 391 3 a-Hydroxy-16a-methyl-11,20-dioxo-5/3-pregnane-21-glyoxylic acid, 191 17 -Hydroxy-l-niethyl-A-homo-5a-androst-l-en-3-one acetate, 362 17 /3-Hy droxy-5a, 1 Oa-methy lene-A-norestran-3-one, 429 17 3-Hydroxy-17 a-methyl-10 ( 5 4) -fl( < o-estrane-3,5-dione, 314 3a-Hydroxy-16a-methyl-5/3-pregnane-11,20-dione, lyl... [Pg.460]

In this type of cleavage reaction, it appears that the axial benzoate is the preferred product. If water is excluded from the reaction, a bromo benzoate is obtained.The highly oxidizing medium of 2,2 -bipyridinium chlorochromate and MCPBA in CH2CI2 at rt for 36 h effects a similar conversion of benzylidene acetals to hydroxy benzoates in 25-72% yield. ... [Pg.220]

Diketones 1 can be converted into the salt of an a-hydroxy carboxylic acid upon treatment with alkali hydroxide after acidic workup the free a-hydroxy carboxylic acid 2 is obtained. A well-known example is the rearrangement of benzil (R, R = phenyl) into benzilic acid (2-hydroxy-2,2-diphenyl acetic acid). The substituents should not bear hydrogens a to the carbonyl group, in order to avoid competitive reactions, e.g. the aldol reaction. [Pg.35]

Viprostol (81) also incorporates a hydroxy group moved to C-16 and protects this from facile metabolic oxidation by vinylation. It is a potent hypotensive and vasodilatory agent both orally and transdermally. The methyl ester moiety is rapidly hydrolyzed in skin and in the liver so it is essentially a prodrug. It is synthesized from protected E-iodo olefin 78 (compare with 75) by conversion to the mixed organocuprate and this added in a 1,4-sense to olefin 79 to produce protected intermediate 80. The synthesis of viprostol concludes by deblocking with acetic acid and then reesterification with diazomethane to give 81 [19]. [Pg.13]

Chemical Name a-Hydroxy-Q-phenylbenzene acetic acid-2-(diethylamino)ethyl ester Common Name /3-Diethylaminoethylbenzilate hydrochloride Structural Formula c.h. oh... [Pg.135]

The following technique is described in U.S. Patent 2,541,104. A solution of 2.0 g of 3(a )-hydroxy-21-acetoxy-11,20-diketo-pregnane, which can be prepared as described in Helv. Chim. Acta 27, 1287 (1944), is treated in a mixture of 25 cc of alcohol and 6.4 cc of acetic acid at 0°C with 6.0 g of potassium cyanide. The solution is allowed to warm to room temperature and after 3 hours is diluted with water. The addition of a large volume of water to the alcohol-hydrogen cyanide mixture precipitates a gum which is extracted with chloroform or ethyl acetate. The extract is washed with water, and evaporated to small volume under reduced pressure. The crystalline precipitate (1.3 g) consists of 3(a ),20-dihvdroxy-20-cvano-21-acetoxy-11-keto-pregnane dec. 175° to 185°C. [Pg.389]

A solution of 1.0 g of A -3,11-diketo-20-cyano-21-acetoxy-pregnene in 10 cc of benzene is treated with 1.0 g of osmium tetroxide and 0.43 g of pyridine. After standing at room temperature for 18 hours, the resulting solution is treated successively with 50 cc of alcohol, and with 50 cc of water containing 2.5 g of sodium sulfite. The mixture is stirred for 30 hours, filtered, and the filtrate acidified with 0.5 cc of acetic acid and concentrated to small volume in vacuo. The aqueous suspension is then extracted four times with chloroform, the chloroform extracts are combined, washed with water and concentrated to dryness in vacuo. Recrystallization of the residue from acetone gives 3,11,20-triketo-17(a)-21-dihydroxy-pregnane MP 227° to 229°C. This compound is then treated with acetic anhydride and pyridine for 15 minutes at room temperature to produce 3,11,20-triketo-17(a)-hydroxy-21-acetoxy-pregnane or cortisone acetate. [Pg.390]

A mixture of 50 grams of a-dl-1,2-diphenyl-2-hydroxy-3-methyl-4-dimethylaminobutane hydrochloride, 50 grams of propionic anhydride and 50 cc of pyridine was refluxed for about 5 hours. The reaction mixture was cooled to 50°C and ethyl ether was added to the point of incipient precipitation. The hydrochloride salt of 0 -dl-l,2-diphenyl-2-propion-oxy-3-methyl-4-dimethylamlnobutane formed in the reaction precipitated upon cooling and was removed by filtration and washed with anhydrous ether. On recrystallization from a mixture of methanol and ethyl acetate, a-dl-l, 2-diphenyl-2-propionoxy-3-methyl-4-dimethyl amlnobutane hydrochloride melted at 170°-171°C. [Pg.1314]

Fig. 2-4. The enantiomeric separation of a-hydroxy/halogen acids on ristocetin A CSP (250 x 4.6 mm) with the same mobile phase composition methanol with 0.02 % acetic acid and 0.01 % triethylamine (v/v). The flow rate was 1.0 mL min at ambient temperature (23 °C). Fig. 2-4. The enantiomeric separation of a-hydroxy/halogen acids on ristocetin A CSP (250 x 4.6 mm) with the same mobile phase composition methanol with 0.02 % acetic acid and 0.01 % triethylamine (v/v). The flow rate was 1.0 mL min at ambient temperature (23 °C).
Nucleophilic addition of an alcohol to the carbonyl group initially yields a hydroxy ether called a hemiacetal, analogous to the gem diol formed by addition of water. HcmiacetaJs are formed reversibly, with the equilibrium normally favoring the carbonyl compound. In the presence of acid, however, a further reaction occurs. Protonation of the -OH group, followed by an El-like loss of water, leads to an oxonium ion, R2C=OR+, which undergoes a second nucleophilic addition of alcohol to yield the acetal. The mechanism is shown in Figure 19.12. [Pg.717]

The chiral acetate reagent is readily prepared from methyl mandelate [methyl (A)-hydroxy-phenyl acetate] which is first converted by treatment with phcnylmagnesium bromide into the triphenylglycol783, c (see Section 1.3.4.2.2.2.) and subsequently transformed into the acetate by reaction with acetyl chloride in the presence of pyridine. Thereby, the secondary hydroxyl group of the glycol is esterified exclusively. Both enantiomers of the reagent are readily accessible since both (R)- and (5)-hydroxyphenylacelic acid (mandelic acids) arc industrial products. [Pg.491]

A similar case of enolatc-controlled stereochemistry is found in aldol additions of the chiral acetate 2-hydroxy-2.2-triphenylethyl acetate (HYTRA) when both enantiomers of double deprotonated (R)- and (S)-HYTRA are combined with an enantiomerically pure aldehyde, e.g., (7 )-3-benzyloxybutanal. As in the case of achiral aldehydes, the deprotonated (tf)-HYTRA also attacks (independent of the chirality of the substrate) mainly from the /te-side to give predominantly the t/nii-carboxylic acid after hydrolysis. On the other hand, the (S)-reagcnt attacks the (/ )-aldebyde preferably from the. S7-side to give. s wz-carboxylic acids with comparable selectivity 6... [Pg.574]

Glycosides are mixed acetals formally arising by elimination of water between the hemiacetal or hemiketal hydroxy group of a sugar and a hydroxy group of a second compound. The bond between the two components is called a glycosidic bond. [Pg.51]

Fluoboric acid is also an efficacious promoter of cyclic oxo-carbenium ions (Scheme 4.24) bearing an activated double bond which, in the presence of open-chain and cyclic dienes, rapidly undergo a Diels-Alder reaction [91]. Chiral a, -unsaturated ketones bearing a -hydroxy substituents, protected as acetals, react with various dienes in the presence of HBF4, affording Diels-Alder adducts that were isolated as alcohols by hydrolysis of the acetal group by TsOH. Some examples of reactions with isoprene are reported in Table 4.23. The enantios-electivity of the reaction is dependent on the size of the substituent R on the of-carbon high levels of asymmetric induction were observed with R = z-Pr (90 1) and R = t-Bu (150 1) and low levels with R = Me (2.7 1) and R = Ph (3.0 1). Scheme 4.24 shows the postulated reaction mechanism. [Pg.187]

A hydroxy and an arylthio group can be added to a double bond by treatment with an aryl disulfide and lead tetraacetate in the presence of trifluoroacetic acid." Manganese and copper acetates have been used instead of Pb(OAc)4. ° Addition of the groups OH and RSO has been achieved by treatment of alkenes with O2 and a thiol (RSH)." Two RS groups were added, to give vie- dithiols, by treatment of the alkene with a disulfide RSSR and Bp3-etherate."° This reaction has been carried... [Pg.1055]

Alkenes have also been converted to more highly oxidized products. Examples are (1) Treatment with KMn04 in aqueous acetone containing acetic acid gives a-hydroxy ketones. (2) 1,2-Disubstituted and trisubstituted alkenes give a-chloro ketones when oxidized with chromyl chloride in acetone RCH=CR R"—> RCOCCIR R". (3) a-Iodo ketones can be prepared by treating alkenes with... [Pg.1538]


See other pages where Acetals, a-hydroxy is mentioned: [Pg.66]    [Pg.66]    [Pg.435]    [Pg.267]    [Pg.217]    [Pg.71]    [Pg.26]    [Pg.33]    [Pg.45]    [Pg.766]    [Pg.619]    [Pg.304]    [Pg.315]    [Pg.315]    [Pg.460]    [Pg.70]    [Pg.147]    [Pg.684]    [Pg.1208]    [Pg.442]    [Pg.491]    [Pg.493]    [Pg.527]    [Pg.916]   


SEARCH



Acetals hydroxy

Acetals, a-hydroxy addition reactions with alkylaluminum

Acetals, a-hydroxy chiral

Acetals, a-hydroxy compounds

Ketals, a-hydroxy Ketene acetals

© 2024 chempedia.info