Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption bands, selection rules

The strength or intensity of absorption is related to the dipole strength of transition D or square of the transition moment integral M m , and is pressed in terms of oscillator strength / or integrated molar extinction jfe Jv. A transition with /= 1, is known as totally allowed transition. But the transitions between all the electronic, vibrational or rotational states are not equally permitted. Some are forbidden which can become allowed under certain conditions and then appear as weak absorption bands. The rules which govern such transitions are known as selection rules. For atomic energy levels, these selection rules have been empirically obtained from a comparison between the number of lines theoretically... [Pg.65]

The synnnetry selection rules discussed above tell us whether a particular vibronic transition is allowed or forbidden, but they give no mfonnation about the intensity of allowed bands. That is detennined by equation (Bl.1.9) for absorption or (Bl.1.13) for emission. That usually means by the Franck-Condon principle if only the zero-order tenn in equation (B 1.1.7) is needed. So we take note of some general principles for Franck-Condon factors (FCFs). [Pg.1138]

Polyatomic molecules vibrate in a very complicated way, but, expressed in temis of their normal coordinates, atoms or groups of atoms vibrate sinusoidally in phase, with the same frequency. Each mode of motion functions as an independent hamionic oscillator and, provided certain selection rules are satisfied, contributes a band to the vibrational spectr um. There will be at least as many bands as there are degrees of freedom, but the frequencies of the normal coordinates will dominate the vibrational spectrum for simple molecules. An example is water, which has a pair of infrared absorption maxima centered at about 3780 cm and a single peak at about 1580 cm (nist webbook). [Pg.288]

In the first case, the difference in intensities Ip — Is is computed. Due to the surface selection rule, what results is a spectrum showing absorption bands of species on the surface. [Pg.135]

In collaboration with E.L. Sibert, we have learned to interpret these Franck-Con-don forbidden, pure torsional band intensities in S,-S0 absorption spectra quantitatively and thus place the key ml+ assignment on firm ground.27 The forbidden bands follow the selection rule Am = 3, so we need a perturbation of the form Vel cos 3a. Working in an adiabatic representation with the S0 and S, electronic states denoted by y0(g a) and /,( a) and the torsional states by m" and m, the electric dipole transition moment is,... [Pg.168]

For a fundamental vibrational mode to be IR-active, a change in the molecular dipole must take place during the molecular vibration. This is described as the IR selection rule. Atoms that possess different electronegativity and are chemically bonded change the net dipole of a molecule during normal molecular vibrations. Typically, antisymmetric vibrational modes and vibrations due to polar groups are more likely to exhibit prominent IR absorption bands. [Pg.63]

Some characteristics of, and comparisons between, surface-enhanced Raman spectroscopy (SERS) and infrared reflection-absorption spectroscopy (IRRAS) for examining reactive as well as stable electrochemical adsorbates are illustrated by means of selected recent results from our laboratory. The differences in vibrational selection rules for surface Raman and infrared spectroscopy are discussed for the case of azide adsorbed on silver, and used to distinguish between "flat" and "end-on" surface orientations. Vibrational band intensity-coverage relationships are briefly considered for some other systems that are unlikely to involve coverage-induced reorientation. [Pg.303]

In polymers the infrared absorption spectrum is generally very simple, considering the large number of atoms that are involved. This simplicity is due to the fact that many of the normal vibrations have almost the same frequency and so appear in the spectrum as one absorption band and, also from the strict selection rules that avoid many of the vibrations from causing absorptions. [Pg.77]

For some direct-gap materials, the quantum electronic selection rules lead to = 0. However, this is only strictly true at / = 0. For 0, it can be assumed, in a first order approximation, that the matrix element involving the top valence and the bottom conduction states is proportional to k that is, Pif k. Within the simplified model of parabolic bands (see Appendix Al), it is obtained that Tuo = Tuog + flp., and therefore Pif k co — cog). Thns, according to Equations (4.31) and (4.32), the absorption coefficient for these transitions (called forbidden direct transitions) has the following spectral dependence ... [Pg.135]

There are two effects of the anharmonicity of the quantized energy levels described above, which have signiflcance for NIRS. First, the gap between adjacent energy levels is no longer constant, as it was in the simple harmonic case. The energy levels converge as n increases. Second, the rigorous selection rule that An = +1 is relaxed, so that weak absorptions can occur with n = 2 (flrst overtone band), or +3 (second overtone band), etc. [Pg.113]

Thus in either formulation the exciton spectrum consists of a series of bands, but the optical absorption spectrum consists of a series of lines because the selection rule... [Pg.75]

When discussing the IR selection rules, we saw that the C=C bond of acetylene absorbs at 2180 cm (although this particular absorption band is IR inactive). Table 3.2 gives the stretching vibrations for alkynes and other triple and cumulative bonds which absorb in this region. [Pg.34]


See other pages where Absorption bands, selection rules is mentioned: [Pg.1244]    [Pg.126]    [Pg.141]    [Pg.242]    [Pg.113]    [Pg.552]    [Pg.46]    [Pg.43]    [Pg.347]    [Pg.102]    [Pg.371]    [Pg.151]    [Pg.275]    [Pg.365]    [Pg.159]    [Pg.225]    [Pg.323]    [Pg.151]    [Pg.168]    [Pg.6]    [Pg.159]    [Pg.125]    [Pg.14]    [Pg.228]    [Pg.113]    [Pg.15]    [Pg.95]    [Pg.768]    [Pg.529]    [Pg.122]    [Pg.344]    [Pg.111]    [Pg.434]    [Pg.370]    [Pg.91]    [Pg.251]    [Pg.32]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



Absorption bands

Selection rules

Selection rules and intensities of absorption bands

Selection rules, absorption

© 2024 chempedia.info