Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-cyclic compounds

When the asymmetric carbon atoms in a chiral compound are part of a ring, the isomerism is more complex than in acyclic compounds. A cyclic compound which has two different asymmetric carbons with different sets of substituent groups attached has a total of 2 = 4 optical isomers an enantiometric pair of cis isomers and an enantiometric pair of trans isomers. However, when the two asymmetric centers have the same set of substituent groups attached, the cis isomer is a meso compound and only the trans isomer is chiral. (See Fig. 1.15.)... [Pg.47]

A variety of condensation processes can lead to cyclic hydroxamic acids. These involve either the condensation of two molecules or the intramolecular cyclization of a single compound. In some cases, a primary hydroxamic acid function is already present and formation of a cyclic compound can arise by suitable reaction on nitrogen. These processes will be dealt with first. [Pg.206]

A heterocycle is a cyclic compound that contains atoms of two or more elements in its ring, usually carbon along with nitrogen, oxygen, or sulfur. Heterocyclic amines are particularly common, and many have important biological properties. Pyridoxal phosphate, a coenzyme sildenafil (Viagra),... [Pg.945]

Oxytocin is a cyclic compound containing a disulfide bridge between two cysteine residues. [Pg.1058]

The best way to understand how orbital symmetry affects pericyclic reactions is to look at some examples. Let s look first at a group of polyene rearrangements called electrocyclic reactions. An electrocyclic reaction is a pericyclic process that involves the cycli/ation of a conjugated polyene. One 7r bond is broken, the other 7t bonds change position, a new cr bond is formed, and a cyclic compound results. For example, a conjugated triene can be converted into a cyclohexa-diene, and a conjugated diene can be converted into a cyclobutene. [Pg.1181]

The process proceeds through the reaction of pairs of functional groups which combine to yield the urethane interunit linkage. From the standpoint of both the mechanism and the structure type produced, inclusion of this example with the condensation class clearly is desirable. Later in this chapter other examples will be cited of polymers formed by processes which must be regarded as addition polymerizations, but which possess within the polymer chain recurrent functional groups susceptible to hydrolysis. This situation arises most frequently where a cyclic compound consisting of one or more structural units may be converted to a polymer which is nominally identical with one obtained by intermolecular condensation of a bifunctional monomer e.g., lactide may be converted to a linear polymer... [Pg.39]

In Section 3 of this chapter it was mentioned that polymers obtained by intermolecular condensation of bifunctional monomers may often be prepared alternatively by an addition polymerization of a cyclic compound having the same composition as the structural unit. Typical examples are shown in Table III. The processes indicated are appropriately regarded as addition polymerizations. Each of these polymers may also be prepared through the condensation of suitable bifunctional monomers. The dimethylsiloxane polymer, for example, may be prepared, as indicated in Table I (p. 45), through the condensation of dimethyl dihydroxysilane formed by hydrolysis of the di-chlorosilane... [Pg.57]

This type of reaction, whether it involves the cyclisation of a polyene, as here, or the ring-opening of a cyclic compound to form a polyene, is known as an electrocyclic reaction. [Pg.341]

Cycloaddition reactions, which increase molecular complexity by formation of a cyclic compound and, simultaneously, two C-C or C-X bonds [1], are among the most widely used reactions in organic synthesis. The reactions are also regio- and stereoselective. For these reasons, such processes are usually the key step in the multistep synthesis of natural products. [Pg.295]

On studying a series of ammonium 1,3,2,5-dioxaborataphosphorinane oxides (111), the dependence of the tautomeric equilibrium position on amine basicity was analyzed. The equilibrium position was estimated from chemical shift values of bis(oxymethyl)phenylphosphine oxide with 8 3IP of 35 ppm being used as a model of an acyclic form and 5-Ph-5-oxo-1,3,5-dioxaphosphorinane (107, R = H) with 8 3IP of 6 ppm used as a model of a cyclic compound. The chemical shift values (111, X = 0, R = H) and dissociation constants (pKa) of conjugate acids for amines are presented in Table V. [Pg.99]

Geometrical isomers differ only in the spatial orientation of groups about a plane or direction, i.e., they differ in orientation either (i) around a double bond (see 2-butene) or (ii) across the ring in a cyclic compound (see 1,2-dichlorocyclobutane). Both cis and trans isomers exist. [Pg.403]

Unfortunately, in many cases the reaction is not so straightforward it becomes complicated because of the nature of the activated component. There is another nucleophile in the vicinity that can react with the electrophile namely, the oxygen atom of the carbonyl adjacent to the substituted amino group. This nucleophile competes with the amine nucleophile for the electrophilic center, and when successful, it generates a cyclic compound — the oxazolone. The intermolecular reaction (path A) produces the desired peptide, and the intramolecular reaction (path B) generates the oxazolone. The course of events that follows is dictated by the nature of the atom adjacent to the carbonyl that is implicated in the side reaction. [Pg.8]

Multilayered cyclophanes having three aromatic rings fixed in parallel planes above one another exhibit properties intermediate between those of the [2.2]paracyclophanes and the above-mentioned compounds 51 and 52. A cyclic compound of this type, (53), has apparently been isolated by Hubert 77>. The tetracyanoethylene complex of... [Pg.96]

The use of cyclic alkenes as substrates or the preparation of cyclic structures in the Heck reaction allows an asymmetric variation of the Heck reaction. An example of an intermolecular process is the addition of arenes to 1,2-dihydro furan using BINAP as the ligand, reported by Hayashi [23], Since the addition of palladium-aryl occurs in a syn fashion to a cyclic compound, the 13-hydride elimination cannot take place at the carbon that carries the phenyl group just added (carbon 1), and therefore it takes place at the carbon atom at the other side of palladium (carbon 3). The normal Heck products would not be chiral because an alkene is formed at the position where the aryl group is added. A side-reaction that occurs is the isomerisation of the alkene. Figure 13.20 illustrates this, omitting catalyst details and isomerisation products. [Pg.285]

Step 1 Find tbe root Identify the longest chain or ring in the hydrocarbon. If the hydrocarbon is an alkene or an alkyne, make sure that you include any multiple bonds in the main chain. Remember that the chain does not have to be in a straight line. Count the number of carbon atoms in the main chain to obtain the root. If it is a cyclic compound, add the prefix -cyclo- before the root. [Pg.14]

We know today that benzene is a cyclic compound with the equivalent of three double bonds and three single bonds, as shown in Figure 1.9(A). However, the electrons that form the double bonds in benzene are spread out and shared over the whole molecule. Thus, benzene actually has six identical bonds, each one half-way between a single and a double bond. These bonds are much more stable than ordinary double bonds and do not react in the same way. Figure 1.9(B) shows a more accurate way to represent the bonding in benzene. Molecules with this type of special electron sharing are called aromatic compounds. As mentioned earlier, benzene is the simplest aromatic compound. [Pg.18]

As in the case of acyclic compounds, the level of difficulty of the synthesis of a cyclic compound depends upon whether the molecule is a consonant or a dissonant system. However, some additional difficulties may be encountered in molecules with medium-sized rings as well as in polycyclic bridged compounds, which are treated in the next Chapter. On the other hand, as we have seen in Heading 4.3, even simple monofunctionalised cyclic molecules may require a FGA operation before bond disconnection of the cyclic network at the ipso-, a- or 13-positions can be effected. [Pg.158]

In the butane route, a chemically complicated three-step process is needed to get from the feed to EDO. The two feeds, oxygen (air is used) and butane, are fed to a fluid bed reactor admixed with a catalyst. In a fluid bed reactor, the feeds and catalyst move continuously and, in this case, at a uniform temperature that allows optimum conditions for the catalyst to do its work. Butane and oxygen react to form maleic anhydride (MA), a cyclic compound. The fixed bed reactor effluent gases are taken off overhead, cooled, and filtered to remove entrained catalyst particles. The gases are then... [Pg.209]


See other pages where A-cyclic compounds is mentioned: [Pg.233]    [Pg.290]    [Pg.56]    [Pg.123]    [Pg.528]    [Pg.343]    [Pg.1323]    [Pg.467]    [Pg.85]    [Pg.251]    [Pg.14]    [Pg.921]    [Pg.155]    [Pg.350]    [Pg.617]    [Pg.198]    [Pg.4]    [Pg.443]    [Pg.208]    [Pg.106]    [Pg.442]    [Pg.25]    [Pg.64]    [Pg.97]    [Pg.98]    [Pg.98]    [Pg.295]    [Pg.295]    [Pg.22]    [Pg.217]    [Pg.280]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Cyclic compounds

© 2024 chempedia.info