Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

7r-Allylpalladium compound

A novel synthesis of 7r-allylpalladium compounds (114) using vinylmercurials and a variety of functionalized olefins affords a range of useful complexes in high yield under mild conditions. The advantages of the method include the use of... [Pg.348]

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Treatment of 7r-allylpalladium chloride with CO in EtOH affords ethyl 3-butenoate (321)[284]., 3, y-Unsaturated esters, obtained by the carbonylation of TT-allylpalladium complexes, are reactive compounds for 7r-allyl complex formation and undergo further facile transformation via 7r-allylpalladium complex formation. For example, ethyl 3-butenoate (321) is easily converted into 1-carboethoxy-TT-allylpalladium chloride (322) by the treatment with Na PdCL in ethanol. Then the repeated carbonylation of the complex 322 gives ethyl 2-... [Pg.64]

Reactions of Allylic Compounds via 7r-Allylpalladium Complexes Catalyzed by Pd(0)... [Pg.290]

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

Allylic metal compounds useful for further transformations can be prepared by Pd-catalyzed reactions of allylic compounds with bimetallic reagents. By this transformation, umpolung of nucleophilic 7r-allylpalladium complexes to electrophilic allylmetal species can be accomplished. Transfer of an allyl moiety from Pd to Sn is a typical umpolung. [Pg.353]

Hydrosilanes react with butadiene by the catalysis of palladium compounds, but the nature of the reaction is somewhat different from that of the telomerization of other nucleophiles described before. Different products are obtained depending on both the structure of silanes and the reaction conditions. Trimethylsilane and other trialkylsilanes reacted with butadiene to give the 1 2 adduct, l-trialkylsilyl-2,6-octadienes (65), in high yield (98%) (62-64). Unlike other telomers which have the 1,6-octadienyl chain, the telomers of silanes have the 2,6-octadienyl chain. As catalysts, Pd(PPh3)2 (maleic anhydride), PdCl2(PhCN)2, PdCl2, and 7r-allylpalladium chloride were used. Methyldiethoxysilane behaved similarly to give the 1 2 adduct. [Pg.162]

On the other hand, the methoxyester results from MeOH attack on coordinated double bond, followed by methoxycarbonylation (Scheme 11). In both cases, the formation of 7r-allylpalladium complexes directs the regio-chemistry of the process. By optimizing the reaction conditions, it has been possible to obtain the unsaturated diester selectively. The latter compound is particularly important, since it can be easily transformed after hydrolysis and hydrogenation into adipic acid [52-54], Selective alkoxy-alkoxycarbonylation of 1,3-dienes has also been achieved [55]. [Pg.249]

Metal-Halogen Compounds. An unusual example of the addition of a metal halide to a conjugated diene has been reported. The complex formed from palladium chloride and butadiene has been shown to be a dimer of 1-chloromethyl-7r-allylpalladium chloride, (85). Whether this is a true insertion reaction or some type of ionic reaction has not been determined, but its close analogy with the olefin-palladium chloride insertion reaction mentioned above would suggest an insertion mechanism for the diene reaction also. [Pg.192]

The 7r-allylpalladium complexes 241 formed from the ally] carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[ 148], The syn-... [Pg.168]

Allylic ester rearrangement is catalyzed by both Pd(II) and Pd(0) compounds, but their catalyses are different mechanistically. Allylic rearrangement of allylic acetates takes place by the use of Pd(OAc)2-Ph3P [Pd(0)-phosphine] as a catalyst[492,493]. An equilibrium mixture of 796 and 797 in a ratio of 1.9 1.0 was obtained[494]. The Pd(0)-Ph3P-catalyzed rearrangement is explained by 7r-allylpalladium complex formation[495],... [Pg.207]


See other pages where 7r-Allylpalladium compound is mentioned: [Pg.2215]    [Pg.2003]    [Pg.2093]    [Pg.2618]    [Pg.2618]    [Pg.2327]    [Pg.2548]    [Pg.476]    [Pg.2215]    [Pg.2003]    [Pg.2093]    [Pg.2618]    [Pg.2618]    [Pg.2327]    [Pg.2548]    [Pg.476]    [Pg.297]    [Pg.300]    [Pg.318]    [Pg.339]    [Pg.358]    [Pg.363]    [Pg.480]    [Pg.311]    [Pg.190]    [Pg.38]    [Pg.108]    [Pg.157]    [Pg.166]    [Pg.186]    [Pg.196]    [Pg.205]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 ]




SEARCH



Allylpalladium

© 2024 chempedia.info