Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Z-enolate

Enolate geometry (E- or Z-) is an important stereochemical aspect. Z-Enolates usually give a higher degree of stereoselection than E-enolates. [Pg.82]

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

Chiral 2-oxazolidones are useful recyclable auxiliaries for carboxylic acids in highly enantioselective aldol type reactions via the boron enolates derived from N-propionyl-2-oxazolidones (D.A. Evans, 1981). Two reagents exhibiting opposite enantioselectivity ate prepared from (S)-valinol and from (lS,2R)-norephedrine by cyclization with COClj or diethyl carbonate and subsequent lithiation and acylation with propionyl chloride at — 78°C. En-olization with dibutylboryl triflate forms the (Z)-enolates (>99% Z) which react with aldehydes at low temperature. The pure (2S,3R) and (2R,3S) acids or methyl esters are isolated in a 70% yield after mild solvolysis. [Pg.61]

A consequence of this mechanism is that the reaction is stereospecific with respect to the E- or Z-configuration of the enolate. The E-enolate will give the anti aldol product whereas the Z-enolate will give the syn aldol. [Pg.468]

In a separate report, the Darzens reaction was recently used by Barluenga, Concellon, and coworkers for the preparation of enantiopure a"-amino a,P-epoxy ketones. Accordingly, the Z enolate of a"-amino a-bromo ketone 41 was generated with KHMDS at -100°C. Benzaldehyde was added, and trans epoxyketone 42 was isolated in 87% yield and >95% de. ... [Pg.19]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

Sometimes the structure is such that the reaction is forced into a single path regardless of catalyst. Hydrogenation of the (Z)-enol phosphate 30 over PtOj, 5% Pd-on-C, or 5% Rh-on-C in EtOAc at 3 atm gave a 95% yield of 31, obtained by hydrogenolysis followed by hydrogenation (46a). [Pg.166]

The synthesis of key intermediate 6 begins with the asymmetric synthesis of the lactol subunit, intermediate 8 (see Scheme 3). Alkylation of the sodium enolate derived from carboximide 21 with allyl iodide furnishes intermediate 26 as a crystalline solid in 82 % yield and in >99 % diastereomeric purity after recrystallization. Guided by transition state allylic strain conformational control elements5d (see Scheme 4), the action of sodium bis(trimethylsilyl)amide on 21 affords chelated (Z)-enolate 25. Chelation of the type illustrated in 25 prevents rotation about the nitrogen-carbon bond and renders... [Pg.491]

The high enantioselectivity observed was interpreted in terms of the face selectivity of the (Z)-enolate 59 (Scheme 1.20). The phenyl moiety is thought to stabilize the enolate through a n-n interaction and effectively shield its Re face such that the incoming ketone approaches preferentially from the Si face. [Pg.19]

The Ireland-Claisen reaction of ( )-vinylsilanes has been applied to the stereoselective synthesis of syn- and c/nti-2-substituted 3-silyl alkcnoic acids. a R-2-Alkyl-3-silyl acids are prepared by rearrangement of ( )-silyl ketene acetals which are generated in situ from the kinetically formed (Z)-enolate of the corresponding propionate ester40. Chelation directs the stereochemistry of enolization of heteroelement-substituted acetates in such a way that the syn-diastereomers are invariably formed on rearrangement403. [Pg.345]

In a number of kinctically controlled aldol additions, simple diastereoselectivity is related to the geometry of the enolate (Z)-enolates furnish syn-aldols and (/f)-cnolatcs give //-aldols as the main products. [Pg.456]

With (Z)-amide enolates and (Z)-thioamide enolates a strong preference for sm-adducts is also observed. In general, boron or zirconium (Z)-enolates of ketones and amides display a higher simple diastereoselectivity in favor of syn-products than the corresponding lithium or magnesium enolates6,7. [Pg.456]

For acyclic systems, the anti diastereoselectivity of the (i )-enolates is lower than the syn diastereoselectivity of comparable (Z)-enolates. For example, carboxylic acid esters, which form predominantly ( )-enolates, react with aldehydes with high anti selectivity only in those cases where bulky aromatic substituents are in the alcoholic part of the ester22 25. [Pg.457]

The tris(diethylainino)sulfoiiium difluorotrimethylsiliconate induced aldol addition of enolsi-lancs, which delivers predominantly syw-aldols independent of the cnolate geometry (sec p 1608), calls for another mechanistic model. A.n open transition state model has been proposed which assumes that the naked" ionic oxygens are as far apart as possible28. For (Z)-enolates, one transition state is favored over the diastereomeric orientation due to the avoidance of a repulsive R /CHj interaction. [Pg.461]

Ideal starting materials for the preparation of. svn-aldols are ketones that can be readily deprotonated to give (Z)-enolates which are known to give predominantly yyu-adducts. Thus, when (5,)-1-(4-methylphenyl)sulfonyl-2-(l-oxopropyl)pyrrolidine is treated with dibutylboryl triflate in the presence of diisopropylethylamine, predominant generation of the corresponding (Z)-boron enolate occurs. The addition of this unpurified enolate to 2-methylpropanal displays not only simple diastereoselectivity, as indicated by a synjanti ratio of 91 9, but also high induced stereoselectivity, since the ratio of syn- a/.vyn-lb is >97 3. [Pg.462]

In contrast, highly stereoselective aldol reactions are feasible when the boron etiolates of the mandelic acid derived ketones (/ )- and (5,)-l- t,r -butyldimethylsiloxy-l-cyclohexyl-2-butanone react with aldehydes33. When these ketones are treated with dialkylboryl triflate, there is exclusive formation of the (Z)-enolates. Subsequent addition to aldehydes leads to the formation of the iyn-adducts whose ratio is 100 1 in optimized cases. [Pg.464]

Due to their tendency to form (Z)-enolates, ketones usually provide syn-aldols, and anti-se ec-tive chiral ketone enolates are rare. When, however, (S)-5,5-dimethyl-4-trimethylsiloxy-3-hex-anone is deprotonated with (V-(bromomagnesio)-2,2,6,6-tetramethylpiperidine, the (E)-enolate la is assumed to be formed. Subsequent addition to aldehydes delivers anh-aldols 2a and 3a in ratios of between 92 8 and 95 5 and yields of 75-85%53b. [Pg.471]

Ester enolates which contain the chiral information in the acid moiety have been widely used in alkylations (see Section D.1.1.1,3.) as well as in additions to carbon-nitrogen double bonds (sec Section D.1.4.2.). Below are examples of the reaction of this type of enolate with aldehydes720. The (Z)-enolate generated from benzyl cinnamate (benzyl 3-phenylpropcnoate) and lithium (dimethylphenylsilyl)cuprate affords the /h/-carboxylic acid on addition to acetaldehyde and subsequent hydrogenolysis, The diastereoselectivity is 90 10. [Pg.486]

NMR investigations indicate that, starting from 13, a mixture of the (E)- and (Z)-enolates results. The (Z)-enolate, however, reacts much faster to give the adduct with the expected synconfiguration see D. A. Evans, E. B. Sjogren, A. E. Weber, R. E. Conn. Tetrahedron Lett. 28, 39 (1987). [Pg.516]

The final example concerns cyclization of a silyl enol ether, connected to yet another carbon atom. The (.Ej-enol ether 23 appears to be converted with high stereoselectivity into the aldehyde 24 in 70- 90% yield, while the (Z)-enol ether 23 affords the epimeric aldehyde 25 in similar yield and selectivity164. [Pg.850]

Four different orientations are possible when the enantiofaces of (E)- and (Z)-enolates and an ( )-enone combine via a closed transition state, in which the olefinic moieties of the donor and the acceptor are in a syn arrangement. It should be emphasized that, a further four enan-tiomorphous orientations of A-D are possible leading to the enantiomers 2 and 3. On the basis of extensive studies of Michael additions of the lithium enolates of esters (X = OR) and ketones (X = R) to enones (Y = R) it has been concluded ... [Pg.955]

With (Z)-enolates model transition state C, leading to an/i-adducts, is favored for large X or Y groups. [Pg.955]

Via the Z-enolate an oven dried Schlenk tube equipped with a rubber septum is flushed with argon and charged with 0.66 mL (1.0 mmol) of butyllithium (1.5 N in hexane). The Schlenk tube is cooled to 0°C (icc/salt) and 0.12 g (1.1 mmol) of diisopropylaminc are added slowly by a syringe. This mixture is stirred for 15 min and the rubber septum is replaced by a glass stopper. The hexane and the excess diisopropyl-amine are removed under reduced pressure. After the flask is filled with argon the stopper is replaced with a septum and 0.47 g (4.3 mmol) of HMPA and 2.5 mL of THF are added. This solution is immediately cooled to — 78 °C and 0.14 g (1.1 mmol) of tert-butyl propanoate arc added quickly by syringe. After stirring for... [Pg.957]

The reverse trend is observed with (Z)-enolates. The reaction of the lithium enolate of cyclohexanone with ( )-(2-nitroethenyl)benzene gives a 75 25 mixture of the syn- and anti-adducts. In contrast, the same enolate undergoes addition of ( )-5-(2-nitroethenyl)-l,3-benzo-dioxole to give exclusively the yymaddition product in 93% yield2. [Pg.1011]

The cycloaddition of photoenol of o-methylbenzaldehyde 66 with 5-alkyli-dene-l,3-dioxane-4,6-dione derivatives 67 is an example of a photo-induced Diels Alder reaction in which one component, the diene in this case, is generated by irradiation [48]. The yields of some cycloadducts 68, generated by photo-irradiation of a benzene solution of 66 and 67 at room temperature, are reported in Table 4.14. The first step of the reaction is the formation of (E)-enol 69 and (Z)-enol 70 (Equation 4.7) by an intramolecular hydrogen abstraction of 66 followed by a stereo- and regioselective cycloaddition with... [Pg.166]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]


See other pages where Z-enolate is mentioned: [Pg.81]    [Pg.81]    [Pg.82]    [Pg.84]    [Pg.84]    [Pg.84]    [Pg.87]    [Pg.12]    [Pg.790]    [Pg.325]    [Pg.246]    [Pg.790]    [Pg.203]    [Pg.203]    [Pg.234]    [Pg.454]    [Pg.492]    [Pg.362]    [Pg.484]    [Pg.958]    [Pg.958]    [Pg.963]    [Pg.237]    [Pg.178]   
See also in sourсe #XX -- [ Pg.522 , Pg.530 , Pg.535 , Pg.536 , Pg.553 ]

See also in sourсe #XX -- [ Pg.16 , Pg.661 ]

See also in sourсe #XX -- [ Pg.16 , Pg.661 ]




SEARCH



Aldol Reaction with () and (Z) Enolates

Formation of () and (Z) Enolates

Stereoselective Formation of () or (Z) Boron Enolates

Z and E enolates

Z boron enolate

Z- and E-enol

Z-enol silane

Z-enolates

Z-enolates

© 2024 chempedia.info