Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ynone

Chemoselectivity in the cycloaddition of 2-methylenecycloheptenone (174) changes on addition of In(acac)3. The allylic carbonate 175 reacts with the ketone 174 in the presence of In(acac)3 to give the methylenetetrahydrofuran 176, and the methylenecyclopentane 177 is obtained in its absence[l 13], The cycloaddition of ynones to produce the methylenetetrahydrofuran proceeds smoothly only in the presence of In(acac)3 (10 mol%)[114]. [Pg.314]

Thermal cycli2alion of dienones enals, ynones, diones keloesters, etc, to monocyclic spirocycfc bicyclic derivatives, (ene reaction of unsalurated enol)... [Pg.72]

An example of an exo-dig process would be the base-catalyzed cyclization of an -hydroxy-a,/S-ynone ... [Pg.170]

In Corey and Chaykovsky s initial investigation, a cyclic ylide 79 was observed from the reaction of ethyl cinnamate with ylide 1 in addition to 32% of cyclopropane 53. In a similar fashion, an intermolecular cycloaddition between 2-acyl-3,3-bis(methylthio)acrylnitrile 80 and 1 furnished 1-methylthiabenzene 1-oxide 81. Similar cases are found in transformations of ynone 82 to 1-arylthiabenzene 1-oxide 83 and N-cyanoimidate 84 to adduct ylide 85, which was subsequently transformed to 1-methyl-lX -4-thiazin-l-oxide 86. ... [Pg.11]

Moody and coworkers have also applied this methodology to the preparation of a library of functionalized pyridine scaffold 49 with two points of diversity by coupling ynone 47 with enamine 48. [Pg.310]

The ease with which the dipolarophile interacts with vinylacetylenes depends mainly on a spatial factor. The study of the reactions of alkylthiobuten-3-ynones-l and their selenic and telluric analogs with DPNT shows that, in this case, nitrilimine also acts as a nucleophilic agent with a nucleophilic center on the carbon atom of the 1,3-dipole and always adds to the terminal carbon of the enyne system to form l,3-diphenyl-5-/ -2-pyrazolenines. The oxidation of the latter with chloranil leads to alkynylpyrazoles (65ZOR51). [Pg.9]

TMM cycloadditions to cyclic and conjugated ketones have also been reported (Scheme 2.22) [31]. The steric nature of the substrate does play a critical role in determining product formation. Thus the cyclic ketone (73) produced 55% yield of the tetrahydrofuran, but no cycloadduct could be obtained from the cyclic ketone (74). The enone (75) gave only carbonyl cycloaddition, whereas enone (76) yielded only olefin adduct. Interestingly, both modes of cycloaddition were observed with the enone (77). The ynone (78) also cycloadds exclusively at the carbonyl function [34]. [Pg.72]

Even with the highly reactive dienophile cyclohepta-2,6-dien-4-ynone, generated from 1-aminocycloheptatriazol-6-(1 H)-one by lead(IV) acetate oxidation, only the adduct of benzene oxide 3 can be isolated.231... [Pg.51]

These pentahydrides have attracted attention as catalysts for hydrogenation of the double bond in alkenes. IrH5(PPr3)2 catalyses vinylic H-D exchange between terminal alkenes and benzene, the isomerization of a,f3-ynones, isomerization of unsaturated alcohols and dehydrogenation of molecules such as secondary alcohols [176],... [Pg.162]

Cyclohexanone, 23,35 Cyclohexene oxide, 137 Cyclohcxyl methyl ether, 137 l-Cydohexyl-2-methylpropene, 68-9 ( )-l-Cyclohexyl-2-trimethyl ilylethene, 12 (Z)-l-Cyclohexyl-2-trimethylsilylelhene, 12 l-Cydohcxyl-2-trimethylsilylethyne, 12 (2-Cyclohexylidene-eihyl)trimethylsilane, 29 Cyclopentadec-2-ynone, 48 Cydopentadiene, 25 Cyclopentanone, 72 Cyclopentenones, 15 Cyclopropanone, 133... [Pg.83]

Reaction of the dihydropyranyl-substituted complex 83 with a conjugated internal alkynone 84 affords the Dotz-type formal [3+2+1] cycloadduct 86 in only 6% yield. The major product is the tricycle 85 as the result of a formal [3+4+1] cycloaddition with incorporation of the ynone carbonyl group (Scheme 18) [77]. [Pg.35]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

Fig. 2 Reaction of an iminocarbene complex of chromium with an ynone... Fig. 2 Reaction of an iminocarbene complex of chromium with an ynone...
Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

A stmple and general synthesis of 2,2,4,5-tetrasubstituted furan-3(2//)-ones from 4-hydroxyalk-2-ynones and alkyl halides via tandem CO, addition-elimination protocol is described <96S 1431>. Palladiuni-mediated intramolecular cyclization of substituted pentynoic adds offers a new route to y-arylidenebutyrolactones <96TL1429>. The first total synthesis of (-)-goniofupyrone 39 was reported. Constmction of the dioxabicyclo[4.3.0]nonenone skeleton was achieved by tosylation of an allylic hydroxy group, followed by exposure to TBAF-HF <96TL5389>. [Pg.131]

Several other versions of these catalysts have been developed. Arene complexes of monotosyl-l,2-diphenylethylenediamine ruthenium chloride give good results with a,(3-ynones.55 The active catalysts are generated by KOH. These catalysts also function by hydrogen transfer, with isopropanol serving as the hydrogen source. Entries 6 to 8 in Scheme 5.3 are examples. [Pg.394]

Zinc-containing compounds have also been used as catalyst. Recently, Trost et al. reported asymmetric aldol reactions of methyl ynones 331 with pyruvaldehyde ketals 330 in the presence of a dinuclear zinc catalyst 329 generated from ZnEt2 and a pentadentate 0,N,0,N,0-ligand (328, Scheme 168).428 This reaction is a unique case of enantioselective autoinduction with product incorporation into the catalyst and a reversal of the absolute configuration. [Pg.411]

Certain catalysts promote the reduction of ketones with organosilanes. The reduction of acetophenone with Et3SiH is catalyzed by the diphosphine 65 and gives only a small amount of overreduction to ethylbenzene.377 Aryl alkyl enones and ynones are reduced to the corresponding alcohols with triethoxysilane and the titanium-based catalyst 66.378 Trichlorosilane reduces acetophenone in 90% yield with /V-formylpyrrolidinc catalysis.379... [Pg.74]

Cyclocondensation processes of p-dicarbonyl derivatives or their analogues are still widely employed for the synthesis of new isoxazoles. Non-proteinogenic heterocyclic substituted ct-amino acids have been synthesised using the alkynyl ketone functionality as a versatile building block ynone 2, derived from protected L-aspartic acid 1, reacted with hydroxylamine hydrochloride affording the isoxazole 3 with enantiomeric purity greater than 98% ee <00 JCS(P 1 )2311 >. [Pg.217]

Aniinophenyl)-a,(J>-ynones react with nitrile oxides by domino [3 + 2] cycloaddition/annulation reactions, giving rise to isoxazolo[4,5-c]quinolines in satisfactory yields (434). Nitrile oxides undergo addition to allylzinc bromide to generate 5-butenylisoxazolines in good yields. The domino reaction combines 1,3-cycloaddition with Wurtz coupling (435). [Pg.83]

Carbon monoxide rapidly inserts into the carbon—zirconium bond of alkyl- and alkenyl-zirconocene chlorides at low temperature with retention of configuration at carbon to give acylzirconocene chlorides 17 (Scheme 3.5). Acylzirconocene chlorides have found utility in synthesis, as described elsewhere in this volume [17]. Lewis acid catalyzed additions to enones, aldehydes, and imines, yielding a-keto allylic alcohols, a-hydroxy ketones, and a-amino ketones, respectively [18], and palladium-catalyzed addition to alkyl/aryl halides and a,[5-ynones [19] are examples. The acyl complex 18 formed by the insertion of carbon monoxide into dialkyl, alkylaryl, or diaryl zirconocenes may rearrange to a r 2-ketone complex 19 either thermally (particularly when R1 = R2 = Ph) or on addition of a Lewis acid [5,20,21]. The rearrangement proceeds through the less stable... [Pg.88]

Scheme 4.17. Catalyst-dependent reactions of acyl zirconocenes with ynones. Scheme 4.17. Catalyst-dependent reactions of acyl zirconocenes with ynones.
Table 5.6. Pd-catalyzed reactions of a,p-ynones with saturated acylzirconocene chlorides. Table 5.6. Pd-catalyzed reactions of a,p-ynones with saturated acylzirconocene chlorides.
Pd-catalyzed isomerization of ynones to furans has been an active area of research over the last decade. Huang et al. described a Pd-catalyzed rearrangement of a,P-acetylenic ketones to furans in moderate yield [102], For example, Pd(dba)2 promoted the isomerization of alkyne 124 to a putative allenyl ketone intermediate 125, which subsequently cyclized to the corresponding furan 126. [Pg.289]

Other than the aforementioned ynones, P-iodo-p/y-enone 132 was also converted into a 2,5-disubstituted furan, 133, under Pd-catalyzed cyclization conditions using Herrmann s catalyst, palladacycle catalyst 101 [105]. [Pg.290]


See other pages where Ynone is mentioned: [Pg.563]    [Pg.118]    [Pg.325]    [Pg.34]    [Pg.34]    [Pg.90]    [Pg.103]    [Pg.111]    [Pg.59]    [Pg.338]    [Pg.145]    [Pg.119]    [Pg.165]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.166]    [Pg.167]    [Pg.167]    [Pg.167]    [Pg.167]   
See also in sourсe #XX -- [ Pg.33 , Pg.289 , Pg.479 ]

See also in sourсe #XX -- [ Pg.186 ]

See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.186 ]

See also in sourсe #XX -- [ Pg.377 ]

See also in sourсe #XX -- [ Pg.204 ]




SEARCH



A, 3-Ynones

A,p-ynones

Alkenes with ynones

Conjugated ynone

Conjugated ynones

Cyclopentadec-2-ynone

Methyl ynones

TMS-ynones

Trimethylsilyl-ynones

Ynone substrates

Ynones

Ynones, /-hydroxy, addition

Ynones, cyclization

Ynones, oxetanes

Ynones, synthesis

© 2024 chempedia.info